Performance Claims of Zen 2

At Computex, AMD announced that it had designed Zen 2 to offer a direct +15% raw performance gain over its Zen+ platform when comparing two processors at the same frequency. At the same time, AMD also claims that at the same power, Zen 2 will offer greater than a >1.25x performance gain at the same power, or up to half power at the same performance. Combining this together, for select benchmarks, AMD is claiming a +75% performance per watt gain over its previous generation product, and a +45% performance per watt gain over its competition.

These are numbers we can’t verify at this point, as we do not have the products in hand, and when we do the embargo for benchmarking results will lift on July 7th. AMD did spend a good amount of time going through the new changes in the microarchitecture for Zen 2, as well as platform level changes, in order to show how the product has improved over the previous generation.

It should also be noted that at multiple times during AMD’s recent Tech Day, the company stated that they are not interested in going back-and-forth with its primary competition on incremental updates to try and beat one another, which might result in holding technology back. AMD is committed, according to its executives, to pushing the envelope of performance as much as it can every generation, regardless of the competition. Both CEO Dr. Lisa Su, and CTO Mark Papermaster, have said that they expected the timeline of the launch of their Zen 2 portfolio to intersect with a very competitive Intel 10nm product line. Despite this not being the case, the AMD executives stated they are still pushing ahead with their roadmap as planned.

AMD 'Matisse' Ryzen 3000 Series CPUs
AnandTech Cores
Threads
Base
Freq
Boost
Freq
L2
Cache
L3
Cache
PCIe
4.0
DDR4 TDP Price
(SEP)
Ryzen 9 3950X 16C 32T 3.5 4.7 8 MB 64 MB 16+4+4 3200 105W $749
Ryzen 9 3900X 12C 24T 3.8 4.6 6 MB 64 MB 16+4+4 3200 105W $499
Ryzen 7 3800X 8C 16T 3.9 4.5 4 MB 32 MB 16+4+4 3200 105W $399
Ryzen 7 3700X 8C 16T 3.6 4.4 4 MB 32 MB 16+4+4 3200 65W $329
Ryzen 5 3600X 6C 12T 3.8 4.4 3 MB 32 MB 16+4+4 3200 95W $249
Ryzen 5 3600 6C 12T 3.6 4.2 3 MB 32 MB 16+4+4 3200 65W $199

AMD’s benchmark of choice, when showcasing the performance of its upcoming Matisse processors is Cinebench. Cinebench a floating point benchmark which the company has historically done very well on, and tends to probe the CPU FP performance as well as cache performance, although it ends up often not involving much of the memory subsystem.

Back at CES 2019 in January, AMD showed an un-named 8-core Zen 2 processor against Intel’s high-end 8-core processor, the i9-9900K, on Cinebench R15, where the systems scored about the same result, but with the AMD full system consuming around 1/3 or more less power. For Computex in May, AMD disclosed a lot of the eight and twelve-core details, along with how these chips compare in single and multi-threaded Cinebench R20 results.

AMD is stating that its new processors, when comparing across core counts, offer better single thread performance, better multi-thread performance, at a lower power and a much lower price point when it comes to CPU benchmarks.

When it comes to gaming, AMD is rather bullish on this front. At 1080p, comparing the Ryzen 7 2700X to the Ryzen 7 3800X, AMD is expecting anywhere from a +11% to a +34% increase in frame rates generation to generation.

When it comes to comparing gaming between AMD and Intel processors, AMD stuck to 1080p testing of popular titles, again comparing similar processors for core counts and pricing. In pretty much every comparison, it was a back and forth between the AMD product and the Intel product – AMD would win some, loses some, or draws in others. Here’s the $250 comparison as an example:

Performance in gaming in this case was designed to showcase the frequency and IPC improvements, rather than any benefits from PCIe 4.0. On the frequency side, AMD stated that despite the 7nm die shrink and higher resistivity of the pathways, they were able to extract a higher frequency out of the 7nm TSMC process compared to 14nm and 12nm from Global Foundries.

AMD also made commentary about the new L3 cache design, as it moves from 2 MB/core to 4 MB/core. Doubling the L3 cache, according to AMD, affords an additional +11% to +21% increase in performance at 1080p for gaming with a discrete GPU.

There are some new instructions on Zen 2 that would be able to assist in verifying these numbers.

Ryzen 3000 and EPYC Rome Windows Optimizations and Security
POST A COMMENT

217 Comments

View All Comments

  • Ratman6161 - Friday, June 14, 2019 - link

    Better yet, why even bother talking about it? I read these architecture articles and find them interesting, but I'll spend my money based on real world performance. Reply
  • Notmyusualid - Sunday, July 07, 2019 - link

    @ Ratman - aye, I give this all passing attention too. Hoping one day another 'Conroe' moment lands at our feet. Reply
  • RedGreenBlue - Tuesday, June 11, 2019 - link

    The immediate value at these price points is the multithreading. Even ignoring the CPU cost, the motherboard costs of Zen 2 on AM4 can be substantially cheaper than the threadripper platform. Also, keep in mind what AMD did soon after the Zen 1000 series launch, and, I think, Zen 2 launch to a degree. They knocked down the prices pretty substantially. The initial pricing is for early adopters with less price sensitivity and who have been holding off upgrading as long as possible and are ready to spring for something. 3 months or so from launch these prices may be reduced officially, if not unofficially by 3rd parties. Reply
  • RedGreenBlue - Tuesday, June 11, 2019 - link

    *Meant to say Z+ launch, not Zen 2. Reply
  • Spoelie - Wednesday, June 12, 2019 - link

    To be fair, those price drops were also partially instigated by CPU launches from Intel - companies typically don't lower prices automatically, usually it is from competitive pressure or low sales. Reply
  • just4U - Thursday, June 13, 2019 - link

    I don't believe that's true at all S. Pricing was already lower than the 8th gen Intels and the 9th while adding cores wasn't competing against the Ryzens any more than the older series.. Reply
  • sing_electric - Friday, June 14, 2019 - link

    That's true, but by most indications, if you want the "full" AM4 experience, you'll be paying more than you did previously because the 500-series motherboards will cost significantly more - I'm sure that TR boards will see an increase, too, but I think, proportionately, it might be smaller (because the cost increase for say, PCIe 4.0 is probably a fixed dollar amount, give or take). Reply
  • mode_13h - Tuesday, June 11, 2019 - link

    Huh? There've been lots of Intel generations that did not generate those kinds of performance gains, and Intel has not introduced a newer product at a lower price point, since at least the Core i-series. So, I have no idea where you get this 10-15% perf per dollar figure. Reply
  • Irata - Tuesday, June 11, 2019 - link

    So who does innovate in your humble opinion ?
    Looking at your posts, you seem to confuse / jumble quite a lot of things.
    Example TSMC: So yes, they are giving AMD a better manufacturing that allows them to offer more transistors per area or lower power use at the same clock speed.
    But better perf/ $ ? Not sure - that all depends on the price per good die, i.e. yields, price etc. all play a role and I assume you do not know any of this data.

    Moores law - Alx already covered that...

    As for the 16 core - what would the ideal price be for you ? $199 ? What do the alternatives cost (CPU + HSF and total platform cost).

    If you want to look a price - yes, it did go up compared to the 2xxx series, but compared to the first Ryzen (2017), you do get quite a lot more than you did with the original Ryzen.

    1800x 8C/16T 3,6 Ghz base / 4 Ghz boost for $499
    3900x 12C/24T 3.8 Ghz base / 4,6 Ghz boost for $499

    Now the 2700x was only $329, but its counterpart the 3700x has the same price, roughly the same frequency but a lower power consumption and supposedly better performance in just the range you mention.
    Reply
  • Spunjji - Tuesday, June 11, 2019 - link

    Nice comprehensive summary there! Reply

Log in

Don't have an account? Sign up now