Performance Claims of Zen 2

At Computex, AMD announced that it had designed Zen 2 to offer a direct +15% raw performance gain over its Zen+ platform when comparing two processors at the same frequency. At the same time, AMD also claims that at the same power, Zen 2 will offer greater than a >1.25x performance gain at the same power, or up to half power at the same performance. Combining this together, for select benchmarks, AMD is claiming a +75% performance per watt gain over its previous generation product, and a +45% performance per watt gain over its competition.

These are numbers we can’t verify at this point, as we do not have the products in hand, and when we do the embargo for benchmarking results will lift on July 7th. AMD did spend a good amount of time going through the new changes in the microarchitecture for Zen 2, as well as platform level changes, in order to show how the product has improved over the previous generation.

It should also be noted that at multiple times during AMD’s recent Tech Day, the company stated that they are not interested in going back-and-forth with its primary competition on incremental updates to try and beat one another, which might result in holding technology back. AMD is committed, according to its executives, to pushing the envelope of performance as much as it can every generation, regardless of the competition. Both CEO Dr. Lisa Su, and CTO Mark Papermaster, have said that they expected the timeline of the launch of their Zen 2 portfolio to intersect with a very competitive Intel 10nm product line. Despite this not being the case, the AMD executives stated they are still pushing ahead with their roadmap as planned.

AMD 'Matisse' Ryzen 3000 Series CPUs
AnandTech Cores
Threads
Base
Freq
Boost
Freq
L2
Cache
L3
Cache
PCIe
4.0
DDR4 TDP Price
(SEP)
Ryzen 9 3950X 16C 32T 3.5 4.7 8 MB 64 MB 16+4+4 3200 105W $749
Ryzen 9 3900X 12C 24T 3.8 4.6 6 MB 64 MB 16+4+4 3200 105W $499
Ryzen 7 3800X 8C 16T 3.9 4.5 4 MB 32 MB 16+4+4 3200 105W $399
Ryzen 7 3700X 8C 16T 3.6 4.4 4 MB 32 MB 16+4+4 3200 65W $329
Ryzen 5 3600X 6C 12T 3.8 4.4 3 MB 32 MB 16+4+4 3200 95W $249
Ryzen 5 3600 6C 12T 3.6 4.2 3 MB 32 MB 16+4+4 3200 65W $199

AMD’s benchmark of choice, when showcasing the performance of its upcoming Matisse processors is Cinebench. Cinebench a floating point benchmark which the company has historically done very well on, and tends to probe the CPU FP performance as well as cache performance, although it ends up often not involving much of the memory subsystem.

Back at CES 2019 in January, AMD showed an un-named 8-core Zen 2 processor against Intel’s high-end 8-core processor, the i9-9900K, on Cinebench R15, where the systems scored about the same result, but with the AMD full system consuming around 1/3 or more less power. For Computex in May, AMD disclosed a lot of the eight and twelve-core details, along with how these chips compare in single and multi-threaded Cinebench R20 results.

AMD is stating that its new processors, when comparing across core counts, offer better single thread performance, better multi-thread performance, at a lower power and a much lower price point when it comes to CPU benchmarks.

When it comes to gaming, AMD is rather bullish on this front. At 1080p, comparing the Ryzen 7 2700X to the Ryzen 7 3800X, AMD is expecting anywhere from a +11% to a +34% increase in frame rates generation to generation.

When it comes to comparing gaming between AMD and Intel processors, AMD stuck to 1080p testing of popular titles, again comparing similar processors for core counts and pricing. In pretty much every comparison, it was a back and forth between the AMD product and the Intel product – AMD would win some, loses some, or draws in others. Here’s the $250 comparison as an example:

Performance in gaming in this case was designed to showcase the frequency and IPC improvements, rather than any benefits from PCIe 4.0. On the frequency side, AMD stated that despite the 7nm die shrink and higher resistivity of the pathways, they were able to extract a higher frequency out of the 7nm TSMC process compared to 14nm and 12nm from Global Foundries.

AMD also made commentary about the new L3 cache design, as it moves from 2 MB/core to 4 MB/core. Doubling the L3 cache, according to AMD, affords an additional +11% to +21% increase in performance at 1080p for gaming with a discrete GPU.

There are some new instructions on Zen 2 that would be able to assist in verifying these numbers.

Ryzen 3000 and EPYC Rome Windows Optimizations and Security
Comments Locked

216 Comments

View All Comments

  • Smell This - Sunday, June 16, 2019 - link


    AND ...
    it might be 12- to 16 IF links or, another substrate ?
  • Targon - Thursday, June 13, 2019 - link

    Epyc and Ryzen CCX units are TSMC, the true CPU cores. The I/O unit is the only part that comes from Global Foundries, and is probably at TSMC just to satisfy the contracts currently in place.
  • YukaKun - Monday, June 10, 2019 - link

    "Users focused on performance will love the new 16-core Ryzen 9 3950X, while the processor seems nice an efficient at 65W, so it will be interesting so see what happens at lower power."

    Shouldn't that be 105W?

    And great read as usual.

    Cheers!
  • jjj - Monday, June 10, 2019 - link

    The big problem with this platform is that ST perf per dollar gains are from zero to minimal, depending on SKU.
    They give us around 20% ST gains (IPC+clocks) but at a cost. Would rather have 10-15% gains for free than to pay for 20%. Pretty much all SKUs need a price drop to become exciting, some about 50$, some a bit less and the 16 cores a lot more.

    Got to wonder about memory BW with the 16 cores. 2 channels with 8 cores is one thing but at 16 cores, it might become a limiting factor here and there.
  • Threska - Tuesday, June 11, 2019 - link

    That could be said of any processor. "Yeah, drop the price of whatever it is and we'll love you for it." Improvements cost, just like DVD's costed more than VHS.
  • jjj - Tuesday, June 11, 2019 - link

    In the semi business the entire point is to offer significantly more perf per dollar every year. That's what Moore's Law was, 2x the perf at same price every 2 years. Now progress is slower but consumers aren't getting anything anymore.

    And in pretty much all tech driven areas, products become better every year, even cars. When there is no innovation, it means that the market is dysfunctional. AMD certainly does not innovate here, except on the balance sheet. Innovation means that you get better value and that is missing here. TSMC gives them more perf per dollar, they have additional gains from packaging but those gains do not trickle down to us. At the end of the day even Intel tries to offer 10-15% perf per dollar gains every cycle.
  • AlyxSharkBite - Tuesday, June 11, 2019 - link

    That’s not Moore’s Law at all. It stated that the number of transistors would double. Also it’s been dead a while

    Sandy bridge 4c 1.16b
    Coffee lake 4c is 2.1b (can’t compare the 6c or 8c)

    And that’s a lot more than 2 years.
  • mode_13h - Tuesday, June 11, 2019 - link

    Yeah, but those two chips occupy different market segments. So, you should compare Sandybridge i7 vs. Coffelake i7.
  • Teutorix - Tuesday, June 11, 2019 - link

    The number of transistors in an IC, not the number of transistors per CPU core. This is an important distinction since a CPU core in Moore's day had very little in it besides registers and an ALU. They didn't integrate FPUs until relatively recently.

    It's about overall transistor density, nothing more. You absolutely can compare an 8c to a 4c chip, because they are both a single IC.

    An 8 core coffee lake chip is 20% smaller than a quad core sandy bridge chip. That's double the CPU cores, double the GPU cores, with probably a massive increase in the transistors/core also.

    Moore's law had a minor slowdown with intel stuck at 14nm but its not dead.
  • Wilco1 - Tuesday, June 11, 2019 - link

    Moore's Law is actually accelerating. Just not at Intel. See https://en.wikipedia.org/wiki/Transistor_count - the largest chips now have ~20 Billion transistors, and with 7nm and 5nm it looks like we're getting some more doublings soon.

Log in

Don't have an account? Sign up now