System Performance

Moving on from SPEC to some of our more traditional laptop tests, I’ve taken the opportunity to add some new tests to the suite, which we’ll include on all laptops going forward. While SPEC is a fantastic set of tests to probe the limits of a platform, not everyone is going to run a workload that runs at nearly 100% CPU utilization for such a long time on a laptop. The 8-Thread tests took 4.5 hours to complete on Ice Lake, and 6.5 hours to complete on Picasso, which is likely not something most people would turn to a thin and light laptop for, so it’s important to see how both platforms perform on shorter tests where they can leverage their peak boost frequencies for a higher percentage of the duration.

PCMark 10

PCMark 10 - Essentials

PCMark 10 - Productivity

PCMark 10 - Digital Content Creation

PCMark 10 - Overall

PCMark 10 consists of several real-world tests, including web, video conferencing, spreadsheets, writing, and more. There are several GPU tests as well, including rendering, and some gaming. The suite also measures application start-up, and all aspects of the system’s performance factor into the score.

Intel’s CPU performance lead shows clearly here again, with significant leads in both the Essentials and Productivity tests, although AMD’s strong GPU pulls the Ryzen system very close on the Digital Content Creation tasks. But that is not enough to turn the tide, and the Ice Lake platform carries this win.

Cinebench R20

Cinebench R20 - Single-Threaded Benchmark

Cinebench R20 - Multi-Threaded Benchmark

Looking at the latest version of Cinebench tells a similar story as to what we’ve seen so far. Ice Lake’s significant IPC lead pulls it way ahead. On the multi-threaded test, the AMD platform does close the gap somewhat, which is similar to the SPEC rate 8 results.

7-Zip

7-Zip Compression

7-Zip Decompression

Checking out the popular 7-Zip file compression tool, the results are in-line with what we see in the desktop space. Intel generally has a lead on the compression side, but AMD claws back at decompression. It is a rare win on the CPU side for AMD here.

Handbrake

Handbrake Transcoding (Software)

Transcoding is a popular task, and Handbrake is one of the most popular tools. For this test, a 1080p movie is converted to 720p using the x264 encoder. Once again, Ice Lake offers significantly more performance when transcoding in software.

Handbrake Transcoding (Hardware)

Handbrake also supports various hardware encoders, such as Intel’s QuickSync, which provides significantly quicker transcodes at the same settings – albeit at larger file sizes and slightly lower quality compared to the software transcode, according to the Handbrake documentation. QuickSync has been very popular, and has been around quite a while. AMD also offers hardware encoding and decoding with their Video Core Next platform. Handbrake does support AMD’s Video Coding Engine (VCE) but the Surface Laptop 3 does not offer this as an option in Handbrake, so it was not able to be tested. As this is the only current Ryzen mobile APU we’ve tested, it may be a driver issue specific to the Surface branded processor.

x264

x264 HD 5.x

x264 HD 5.x

Our previous transcoding test, x264, was also run. Here we see that once again Ice Lake has a significant performance advantage, as it did with Handbrake software encoding.

Web Tests

All of our web tests were run with the current version of Microsoft Edge in Windows 10 1909. Web results are highly impacted by the underlying scripting engine, and Microsoft is going to be moving Edge from the EdgeHTML rendering engine to the Chromium open-source project that powers Google Chrome. When they make this change, expected early in 2020, we’ll revamp our suite with new tests.

Mozilla Kraken 1.1

Google Octane 2.0

WebXPRT 3

Intel has aggressively pushed their frequency ramping with Speed Shift, and one of the biggest beneficiaries of Speed Shift is web scripting, since the tasks tend to be very short. AMD is addressing this in Zen 2 with Collaborative Power Performance Control 2, or CPPC2, which is not as elegant of a name as Speed Shift, but promises to drop Zen’s frequency ramping from ~30 ms to ~1 to 2 ms, and will be a welcome addition on our web tests.

SPEC2017 - ST & MT Performance GPU Performance - Vega vs Iris
POST A COMMENT

174 Comments

View All Comments

  • sheh - Thursday, December 19, 2019 - link

    The x264 conclusion is wrong:

    "x264, was also run. Here we see that once again Ice Lake has a significant performance advantage"

    In fact, combining the result for both passes it's:
    AMD: 11.79 FPS
    Intel: 11.03 FPS
    Reply
  • peevee - Monday, December 23, 2019 - link

    Laptop CPUs needed the efficiency gains of Zen 2, Navi and 7nm the most. AMD had obviously dropped the ball here. Reply
  • MBarton - Monday, December 30, 2019 - link

    They didn't "drop the ball". AMD is still financially weak. They can't afford to waste 7nm on mobile parts, which have low profit margins. All their focus are on the highly profitable server market and very profitable high end desktop market. Hence why every new Zen release is strongly focus on SERVER and HEDT. After all the money Intel has thrown away trying to get 10nm to work, they're making very little money selling 10nm parts for low margin laptops. Reply
  • Aviraj_21 - Saturday, January 4, 2020 - link

    nice Reply

Log in

Don't have an account? Sign up now