Rome CPUs: Core Counts and Frequencies

There has been little doubt that on paper Rome and the EPYC 7002 family will be a competitive product compared to Intel's Xeon Scalable when it comes to performance or performance per watt. As always, it comes down to paring which part offers the right competition. With Rome, AMD is once again attacking performance per dollar, as well as peak performance and performance per watt. 

EPYC 7000 nomenclature

The naming of the CPUs is kept consistent with the previous generation.

  • EPYC = Brand
  • = 7000 Series
  • 25-74 = Dual Digit Number indicative of stack positioning / performance (non-linear)
  • 1/2 = Generation
  • P = Single Socket, not present in Dual Socket

AMD is introducing 19 total CPUs to the Rome family, 13 of which are aimed at the dual socket market. All CPUs have 128 PCIe 4.0 lanes available for add-in cards, and all CPUs support up to 4 TiB of DDR4-3200.

AMD EPYC 7001 & 7002 Processors (2P)
  Cores
Threads
Frequency (GHz) L3* TDP Price
Base Max
EPYC 7742 64 / 128 2.25 3.40 256 MB 225 W $6950
EPYC 7702 64 / 128 2.00 3.35 256 MB 200 W $6450
EPYC 7642 48 / 96 2.30 3.20 256 MB 225 W $4775
EPYC 7552 48 / 96 2.20 3.30 192 MB 200 W $4025
EPYC 7542 32 / 64 2.90 3.40 128 MB 225 W $3400
EPYC 7502 32 / 64 2.50 3.35 128 MB 200 W $2600
EPYC 7452 32 / 64 2.35 3.35 128 MB 155 W $2025
EPYC 7402 24 / 48 2.80 3.35 128 MB 155 W $1783
EPYC 7352 24 / 48 2.30 3.20 128 MB 180 W $1350
EPYC 7302 16 / 32 3.00 3.30 128 MB 155 W $978
EPYC 7282 16 / 32 2.80 3.20 64 MB 120 W $650
EPYC 7272 12 / 24 2.90 3.20 64 MB 155 W $625
EPYC 7262 8 / 16 3.20 3.40 128 MB 120 W $575
EPYC 7252 8 / 16 3.10 3.20 64 MB 120 W $475
Select EPYC 7001 Naples CPUs
EPYC 7601 32 / 64 2.20 3.20 64 MB 180 W $4200
EPYC 7551 32 / 64 2.00 3.00 64 MB 180 W >$3400
EPYC 7501 32 / 64 2.00 3.00 64 MB 155 W $3400
EPYC 7451 24 / 48 2.30 3.20 64 MB 180 W $2400
EPYC 7371 16 / 32 3.10 3.80 64 MB 200 W $1550
EPYC 7251 8 / 16 2.10 2.90 32 MB 120 W $475
Special CPUs worth noting listed in bold
* We are awaiting full L3 cache information

The top part is the EPYC 7742, which is the CPU we were provided for in this comparison. It is the most expensive non-custom AMD CPU ever. We will discuss whether the price is a bargain or suitable after we have done some benchmarking. 

But one thing is for sure: AMD is definitely improving the performance per dollar. The real star is the 7502, as it offers 32 Zen2 cores at 2.50/3.35 GHz for $2600. This means that you get higher clocks, better cores, twice the L3, and just as much cores as the 7601 had - in other words, the 7502 is better in every way, but compared to the 7601 it comes with an impressive 40% discount ($2600 vs $4200). 

There is more to it. Unlike Intel's market segmentation strategy, which makes the life of enterprise infrastructure people more complicated than it should be, AMD does not blow fuses on cheaper SKUs to create artificial 'value' for buying more expensive SKUs. The cheapest 8-core 7252 has all 128 PCIe 4.0 lanes, it supports up to 4 TB per socket, it has infinity fabric at the same speed, and includes all virtualization and security features as the best product.

Comparison to Intel

In the table below we have done a base example comparison with some of Intel's SKU list. Given that Intel is dominant in the market, prospective buyers must get a significant price bonus or significantly lower TCO before they switch to AMD.  

Intel Second Gen Xeon Scalable 
(Cascade Lake)
AMD Second Gen EPYC
("Rome")
  Cores Freq TDP
(W)
Price AMD Cores Freq TDP Price
Xeon Platinum 8200 Rome
8280 M 28 2.7/4.0 205 $13012 7742 64 2.25/3.40 225 $6950
8280   28 2.7/4.0 205 $10009          
8276 M 28 2.2/4.0 165 $11722 7742 64 2.25/3.40 225 $6950
8270   26 2.7/4.0 205 $7405          
8268   24 2.9/3.9 205 $6302          
8260 M 24 2.4/3.9 165 $7705 7702 64 2.00/3.35 225 $6450
8260   24 2.4/3.9 165 $4702 7552 48 2.20/3.50 200 $4025
8253   16 2.2/3.0 165 $3115 7502 32 2.50/3.35 200 $2600
Xeon Gold 6200 Rome
6252   24 2.1/3.7 150 $3665          
6248   20 2.5/3.9 150 $3072          
6242   16 2.8/3.9 150 $2529 7452 32 2.35/3.35 155 $2025
6238   22 2.1/3.7 140 $2612 7402 24 2.80/3.35 155 $1783
6226   12 2.8/3.7 125 $1776          
Xeon Silver 4200 Rome
4216   16 2.1/3.2 100 $1002 7282 16 2.80/3.20 120 $625
4214   2x12 2.2/3.2 2x85 2x$694 7402P 24 2.80/3.35 180 $1250

In our comparison, we've also ignored the fact that AMD supports up to 4 TB per socket and has 128 PCIe 4.0 lanes, which it beats Intel on both fronts. While the number of people that will buy 256 GB DIMMs is minimal at best, within the error margin of the market, to us it is simply is ridiculous that Intel expect enterprise users to cough up another few thousand dollars per CPU for a model that supports 2 TB, while you get that for free from AMD. 

Going on paper, especially in the high-end, Intel is completely outclassed. A 28-core Xeon 8276M has a list price of ~$12k, while AMD charges "only" $7k for more than twice as many cores. The only advantage Intel keeps is a slightly higher single threaded clock (4 GHz) and AVX-512 support. You could argue that the TDP is lower, but that has to be measured, and frankly there is a good chance that one 64 core (at 2.25-3.2 GHz) is able to keep with two Intel Xeon 8276 (2x28 cores at 2.2-2.8 GHz), while offering much lower power consumption (single socket board vs dual board, 225W vs 2x165W).  

AMD is even more generous in the mid-range. The EPYC 7552 offers twice the amout of cores at higher clocks than the Xeon Platinum 8260, which is arguably one of the more popular Xeon Platinum CPUs. The same is true for the EPYC 7452, which still costs less than the Xeon Gold 6242.  It is only at the very low end, that the diffences get smaller. 

Single Socket

For single socket systems, AMD will offer the following five processors below. These processors mirror the specifications of the 2P counterparts, but have a P in the name and slightly different pricing.

AMD EPYC Processors (1P)
  Cores
Threads
Frequency (GHz) L3 TDP Price
Base Max
EPYC 7702P 64 / 128 2.00 3.35 256 MB 200 W $4425
EPYC 7502P 32 / 64 2.50 3.35 128 MB 200 W $2300
EPYC 7402P 24 / 48 2.80 3.35 128 MB 200 W $1250
EPYC 7302P 16 / 32 3.00 3.30 128 MB 155 W* $825
EPYC 7232P 8 / 16 3.10 3.20 32 MB 120 W $450
*170W TDP mode also available

This table makes also clear how much extra frequency AMD extracted out of the 7 nm TSMC process. The sixteen core EPYC 7302P runs at 3.0 GHz with all cores, while the EPYC 7351 was limited to 2.4 GHz at the same 155W TDP.

Again, the EPYC 7502P looks like one of the best deals of the server CPU market. This SKU can offer a lot of advantages compared to the current dual socket servers.  If offers very potent single thread performance (3.35 GHz boost) and a very high 2.5 GHz when all cores are used, even when running AVX2 code. Secondly, a single socket server has a lower BOM and has lower power consumption (200W) compared to a dual 16-core system. Lastly, it supports up to 1-2 TB realistically (64-128 GB DIMMs) and has ample I/O bandwidth with 128 PCIe 4.0 lanes.  

Rome and PCIe 4.0 Benchmark Configuration and Methodology
Comments Locked

180 Comments

View All Comments

  • sing_electric - Thursday, August 8, 2019 - link

    Not just Netburst - remember, Intel's plans were ORIGINALLY for Itanium to migrate down through the stack, ending up in consumer machines. Two massively costly mistakes when it came to planing the future of CPUs. Honestly, I hope Intel properly compensated the team behind the P6, an architecture so good that it was essentially brought back a year after release to after those 2 failures.

    OTOH, it's kind of amazing that AMD survived the Bulldozer years, since their margin for error is much smaller than Intel's. Good thing they bought ATI, since I'm not sure the company survives without the money they made from graphics cards and consoles...
  • JohanAnandtech - Thursday, August 8, 2019 - link

    Thank you for the kudos and sympathy. It was indeed hot! At 39°C/102°F, the server was off.

    I agree - I too admire the no-nonsense leadership of Lisa Su. Focus, careful execution and customer centric.
  • WaltC - Thursday, August 8, 2019 - link

    AMD has proven once again that Intel can be beaten, and soundly, too...;) The myth of the indestructible Intel is forever shattered, and Intel's CPU architectures are so old they creak and are riddled with holes, imo. Where would Intel have put us, if there'd been no AMD? You like Rdram, you like Itanium, just for starters? You like paying through the nose? That's where Intel wanted to go in its never-ending quest to monopolize the market! AMD stopped all of that by offering an alternative path the market was happy to take--a path that didn't involve emulators and tossing out your software library just to give Intel a closed bus! Intel licensed AMD's x86-64, among other things--and they flourished when AMD dropped the ball. I chalk all that up to AMD going through a succession of horrible CEOs--people who literally had no clue! Remember the guy who ran AMD for awhile who concluded it made sense for AMD to sell Intel servers...!? Man, I thought AMD was probably done! There's just no substitute for first-class management at the top--Su was the beginning of the AMD renaissance! Finally! As a chip manufacturer, Intel will either learn how to exist in a competitive market or the company over time will simply fade away. I often get the feeling that Intel these days is more interested in the financial services markets than in the computer hardware markets. While Intel was busy milking its older architectures and raking in the dough, AMD was busy becoming a real competitor once again! What a difference the vision at the top, or the lack of it, makes.
  • aryonoco - Thursday, August 8, 2019 - link

    That dude was Rory Read, and while the SeaMicro acquisition didn't work out, he did some great work and restructured AMD and in many ways saved the company while dealing with the Bulldozer disaster.

    Rory stablized the finances of the company by lowering costs over 30%, created the semi-custom division that enabled them to win the contracts for both the Xbox and PS4, creating a stable stream of revenue. Of course Rory's greatest accomplishment was hiring Lisa Su and then grooming her to become the CEO.

    Rory was a transitional CEO and he did exactly what was required of him. If there is a CEO that should be blamed for AMD's woes, it's Dirk Meyer.
  • aryonoco - Thursday, August 8, 2019 - link

    Forgot to mention, Rory also hired Kim Keller to design K12, and in effect he started the project that would later on become Zen.

    Of course Lisa deserves all the glory from then on. She has been an exceptional leader, bringing focus and excelling at execution, things that AMD always traditionally lacked.
  • tamalero - Sunday, August 11, 2019 - link

    Id Blame Hector Ruiz first.
    It was his crown to lose during the Athlon 64 era, and he simply didn't have anything to show. Making the Athlon 64 core arch a one hit wonder for more than a decade.
  • MarcusTaz - Wednesday, August 7, 2019 - link

    Another site's article that starts with an F stated that Rome runs hot and uses 1.4 volts, above TMSC recommended 1.3 volt. Did you need to run 1.4 volts for these tests?
  • evernessince - Wednesday, August 7, 2019 - link

    Well 1st, that 1.3v figure is from TSMC's mobile focused 7nm LPP node. Zen 2 is made on the high performance 7nm node, not the mobile focused LPP. Whatever publication you read didn't do their homework. TSMC has not published information on their high performance node and I think it rather arrogant to give AMD an F based on an assumption. As if AMD engineers are stupid enough to put dangerous voltages through their CPUs that would result in a company sinking lawsuit. It makes zero sense.

    FYI all AMD 3000 series processors go up to 1.4v stock. Given that these are server processors, they will run hot. After all, more cores = more heat. It's the exact same situation for Intel server processors. The only difference here is that AMD is providing 50 - 100% more performance in the same or less power consumption at 40% less cost.
  • DigitalFreak - Thursday, August 8, 2019 - link

    You reading Fudzilla?
  • Kevin G - Wednesday, August 7, 2019 - link

    AMD is back. They have the performance crown again and have decided to lap the competition with what can be described as an embarrassing price/performance comparison to Intel. The only thing they need to do is be able to meet demand.

    One thing I wish they would have done is added quad socket support. Due to the topology necessary, intersocket bandwidth would be a concern at higher core counts but if you just need lots of memory, those low end 8 core chips would have been fine (think memcache or bulk NVMe storage).

    With the topology improvements, I also would have liked AMD to try something creative: a quad chip + low clocked/low voltage Vega 20 in the same package all linked together via Infinity Fabric. That would be something stunning for HPC compute. I do see AMD releasing some GPU in a server socket at some point for this market as things have been aligning in this direction for sometime.

    Supporting something like CCIX or OpenCAPI also would have been nice. A nod toward my previous point, even enabling Infinity Fabric to Vega 20 compute cards instead of PCIe 4.0 would have been yet another big step for AMD as that'd permit full coherency between the two chips without additional overhead.

    I think it would be foolish to ignore AVX-512 for Zen 3, even if the hardware they run it one continues to use 256 bit wide SIMD units. ISA parity is important even if they don't inherently show much of a performance gain (though considering the clock speed drops seen in Sky Lake-SP, if AMD could support AVX-512 at the clocks they're able to sustain at AVX2 on Zen 2, they might pull off an overall throughput win).

    With regards to Intel, they have Cooper Lake due later this year. If Intel was wise, they'd use that as a means to realign their pricing structure and ditch the memory capacity premium. Everything else Intel can do in the short term is flex their strong packaging techniques and push integrated accelerators: on package fabric, FPGA, Optane DIMMs etc. Intel can occupy several lucrative niches in important, growing fields with that they have in-house right now but they need to get them to market and at competitive prices. Otherwise it is AMD's game for the next 12 to 15 months until Ice Lake-SP arrives to bring back the competitive landscape. It isn't even certain that Intel can score a clean win either as Zen 3 based chips may start to arrive in the same time frame.

Log in

Don't have an account? Sign up now