Java Performance

Even though our testing is not the ideal case for AMD (you would probably choose 8 or even 16 back-ends), the EPYC edges out the Xeon 8176. Using 8 JVMs increases the gap from 1% to 4-5%. 

The Critical-jOPS metric is a throughput metric under response time constraint.

SPECJBB 2015-Multi Critical-jOPS  Huge Pages Impact

With this number of threads active, you can get much higher Critical-jOps by significantly increasing the RAM per JVM. However, we did not want that as this would mean we can not compare with systems that can only accommodate 128 GB of RAM. Notice how badly the Intel system needs huge pages. 

The benchmark data of Intel and AMD can be found below. 

According to AMD, the EPYC 7742 can be up to 66% faster. However note that these kind of high scores for critical-jOPS are sometimes configured with 1 TB of RAM and more. 

Java Performance: Max-jOPS HPC: NAMD
Comments Locked

180 Comments

View All Comments

  • Zoolook - Saturday, August 10, 2019 - link

    It's been a pretty good investment for me, bought at 8$ two years ago, seems like I'll keep it for a while longer.
  • CheapSushi - Wednesday, August 7, 2019 - link

    It's glorious...one might say.... even EPYC.
  • abufrejoval - Wednesday, August 7, 2019 - link

    Hard to believe a 64 core CPU can be had for the price of a used middle class car or the price of four GTX 2080ti.

    Of course once you add 2TB of RAM and as many PCIe 4 SSDs as those lanes will feed, it no longer feels that affordable.

    There is a lot of clouds still running ancient Sandy/Ivy Bridge and Haswell CPUs: I guess replacing those will eat quite a lot of chips.

    And to think that it's the very same 8-core part that powers the engire range: That stroke of simplicity and genius took so many years of planning ahead and staying on track during times when AMD was really not doing well. Almost makes you believe that corporations owned by share holders can actually sometimes actually execute a strategy, without Facebook type voting rights.

    Raising my coffee mug in a salute!
  • schujj07 - Thursday, August 8, 2019 - link

    Sandy Bridge maxed out at 8c/16t.
    Ivy Bridge maxed out at 15c/30t.
    Haswell maxed out at 18c/36t.
    That means that a single socket Epyc 64c/128t can give you more CPU cores than a quad socket Sandy Bridge (32c/64t) or Ivy Bridge (60c/120t) and only a few less cores that a quad socket Haswell (72c/144t).
  • Eris_Floralia - Wednesday, August 7, 2019 - link

    This is what we've all been waiting for!
  • Eris_Floralia - Wednesday, August 7, 2019 - link

    Thank you for all the work!
  • quorm - Wednesday, August 7, 2019 - link

    Given the range of configurations and prices here, I don't see much room for threadripper. Maybe 16 - 32 cores with higher clock speeds? Really wondering what a new threadripper can bring to the table.
  • willis936 - Wednesday, August 7, 2019 - link

    A reduced feature set and lower prices, namely.
  • quorm - Wednesday, August 7, 2019 - link

    Reduced in what way, though? I'm assuming threadripper will be 4 chiplets, 64 pcie lanes, single socket only. All ryzen support ecc.

    So, what can it offer? At 32 cores, 8 channel memory becomes useful for a lot of workloads. Seems like a lot of professionals would just choose epyc this time. On the other end, I don't think any gamers need more than a 3900x/3950x. Is threadripper just going to be for bragging rights?
  • quorm - Wednesday, August 7, 2019 - link

    Sorry, forgot to add, 3950x is $750, epyc 7302p is $825. Where is threadripper going to fit?

Log in

Don't have an account? Sign up now