Multi-core SPEC CPU2006

For the record, we do not believe that the SPEC CPU "Rate" metric has much value for estimating server CPU performance. Most applications do not run lots of completely separate processes in parallel; there is at least some interaction between the threads. But since the benchmark below caused so much discussion, we wanted to satisfy the curiosity of our readers. 

 

2P SPEC CPU2006 Estimates
Subtest Xeon
8176
EPYC
7601
EPYC
7742
EPYC
7742
Zen2
vs
Zen1
EPYC
7742
Vs
Xeon
 
Cores 56C 64C 128C    
Frequency 2.8 G 2.7G 2.5-3.2G 2.5-3.2G    
GCC 7.4 7.4 7.4 8.3 7.4 7.4
400.perlbench 1980 2020 4680 4820 +132% +136%
401.bzip2 1120 1280 3220 3250 +152% +188%
403.gcc 1300 1400 3540 3540 +153% +172%
429.mcf 927 837 1540 1540 +84% +66%
445.gobmk 1500 1780 4160 4170 +134% +177%
456.hmmer 1580 1700 3320 6480 +95% +110%
458.sjeng 1570 1820 3860 3900 +112% +146%
462.libquantum 870 1060 1180 1180 +11% +36%
464.h264ref 2670 2680 6400 6400 +139% +140%
471.omnetpp 756 705 (*) 1520 1510 +116% +101%
473.astar 976 1080 1550 1550 +44% +59%
483.xalancbmk 1310 1240 2870 2870 +131% +119%

We repeat: the SPECint rate test is likely unrealistic. If you start up 112 to 256 instances, you create a massive bandwidth bottleneck, no synchronization is going on and there is a consistent CPU load of 100%, all of which is very unrealistic in most integer applications. 

The SPECint rate estimate results emphasizes all the strengths of the new EPYC CPU: more cores, much higher bandwidth. And at the time it ignores one of smaller disadvantages: higher intercore latency. So this is really the ideal case for the EPYC processors. 

Nevertheless, even if we take into account that AMD has an 45% memory bandwidth advantage and that Intel latest chip (8280) offers about 7 to 8% better performance, this is amazing. The SPECint rate numbers of the EPYC 7742 are - on average - simply twice as high as those of the best available socketed Intel Xeons.

Interestingly, we saw that most rate benchmarks ran at  P1 clock or the highest p-state minus one. For example, this is what we saw when running libquantum:

While some benchmarks like h264ref were running at lower clocks. 

The current server does not allow us to do accurate power measuring but if the AMD EPYC 7742 can stay within the 225W TDP while running integer workloads at all cores at 3.2 GHz, that would be pretty amazing. Long story short: the new EPYC 7742 seems to be able to sustain higher clocks than comparable Intel models while running integer workloads on all cores. 

 

Single-Thread SPEC CPU2006 Legacy: 7-zip
Comments Locked

180 Comments

View All Comments

  • schujj07 - Friday, August 9, 2019 - link

    The problem is Microsoft went to the Oracle model of licensing for Server 2016/19. That means that you have to license EVERY CPU core it can be run on. Even if you create a VM with only 8 cores, those 8 cores won't always be running on the same cores of the CPU. That is where Rome hurts the pockets of people. You would pay $10k/instance of Server Standard on a single dual 64 core host or $65k/host for Server DataCenter on a dual 64 core host.
  • browned - Saturday, August 10, 2019 - link

    We are currently a small MS shop, VMWare with 8 sockets licensed, Windows Datacenter License. 4 Hosts, 2 x 8 core due to Windows Licensing limits. But we are running 120+ majority Windows systems on those hosts.

    I see our future with 4 x 16 core systems, unless our CPU requirements grow, in which case we could look at 3 x 48 or 2 x 64 core or 4 x 24 core and buy another lot of datacenter licenses. Because we already have 64 cores licensed the uplift to 96 or 128 is not something we would worry about.

    We would also get a benefit from only using 2, 3, or 4 of our 8 VMWare socket licenses. We could them implement a better DR system, or use those licenses at another site that currently use Robo licenses.
  • jgraham11 - Thursday, August 8, 2019 - link

    so how does it work with hyper threaded CPUs? And what if the server owner decides to not run Intel Hyperthreading because it is so prone to CPU exploits (most 10 yrs+ old). Does Google still pay for those cores??
  • ianisiam - Thursday, August 8, 2019 - link

    You only pay for physical cores, not logical.
  • twotwotwo - Thursday, August 8, 2019 - link

    Sort of a fun thing there is that in the past you've had to buy more cores than you need sometimes: lower-end parts that had enough CPU oomph may not support all the RAM or I/O you want, or maybe some feature you wanted was absent or disabled. These seem to let you load up on RAM and I/O at even 8C or 16C (min. 1P or 2P configs).

    Of course, some CPU-bound apps can't take advantage of that, but in the right situation being able to build as lopsided a machine as you want might even help out the folks who pay by the core.
  • azfacea - Wednesday, August 7, 2019 - link

    F
  • NikosD - Wednesday, August 7, 2019 - link

    Ok guys...The Anandtech's team had a "bad luck and timming issues" to offer a true and decent review of the Greatest x86 CPU of all time, so for a proper review of EPYC Rome coming from the most objective and capable site for servers, take a look here:
    https://www.servethehome.com/amd-epyc-7002-series-...
  • anactoraaron - Thursday, August 8, 2019 - link

    F
  • phoenix_rizzen - Saturday, August 10, 2019 - link

    Review article for new CPU devolves into Windows vs Linux pissing match, completely obscuring any interesting discussion about said hardware. We really haven't reached peak stupid on the internet yet. :(
  • The Benjamins - Wednesday, August 7, 2019 - link

    Can we get a C20 benchmark for the lulz?

Log in

Don't have an account? Sign up now