Murphy's Law

Anything That Can Go Wrong, Will Go Wrong

For those of you that may not know, I am an Academic Director of MCT at Howest University here in Belgium. I perform research in our labs here on big data analytics, virtualization, cloud computing, and server technology in general. We do all the testing here in the lab, and I also do launch article testing for AnandTech.

Undoubtedly, like most academic institutions, we have a summer vacation, where our labs are locked and we are told to get some sunlight. AMD's Rome launch has happened just as our lab closing started, and so I had the Rome server delivered to my home lab instead. The only issue was that our corresponding Intel server was still in the academic lab. Normally this isn't really a problem - even when the lab is open, I issue testing through remote access and process the data that way, in order to reboot the system and run tests and so forth. If a hardware change is needed, I need to be physically there, but usually this isn't a problem.

However, as Murphy's Law would have it, during testing for this review, our Domain Controller also crashed while our labs were closed. We could not reach our older servers any more. This has limited us somewhat in our testing - while I can test this Rome system during normal hours at the home lab (can't really run it overnight, it is a server and therefore loud), I couldn't issue any benchmarks to our Naples / Cascade Lake systems in the lab.

As a result, our only option was to limit ourselves to the benchmarks already done on the EPYC 7601, Skylake, and Cascade Lake machines. Rest assured that we will be back with our usual Big Data/AI and other real world tests once we can get our complete testing infrastructure up and running. 

Benchmark Configuration and Methodology

All of our testing was conducted on Ubuntu Server 18.04 LTS, except for the EPYC 7742 server, which was running Ubuntu 19.04. The reason was simple: we were told that 19.04 had validated support for Rome, and with two weeks of testing time, we wanted to complete what was possible. Support (including X2APIC/IOMMU patches to utilize 256 threads) for Rome is available with Linux Kernel 4.19 and later. 

You will notice that the DRAM capacity varies among our server configurations. This is of course a result of the fact that Xeons have access to six memory channels while EPYC CPUs have eight channels. As far as we know, all of our tests fit in 128 GB, so DRAM capacity should not have much influence on performance. 

 

AMD Daytona - Dual EPYC 7742

AMD sent us the "Daytona XT" server, a reference platform build by ODM Quanta (D52BQ-2U). 

CPU ​AMD EPYC 7742 (2.25 GHz, 64c, 256 MB L3, 225W)
RAM 512 GB (16x32 GB) Micron DDR4-3200
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Micron 9300 3.84 TB (data)
Motherboard Daytona reference board: S5BQ
PSU PWS-1200

Although the 225W TDP CPUs needs extra heatspipes and heatsinks, there are still running on air cooling... 

AMD EPYC 7601 –  (2U Chassis)

CPU Two EPYC 7601  (2.2 GHz, 32c, 8x8MB L3, 180W)
RAM 512 GB (16x32 GB) Samsung DDR4-2666 @2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard AMD Speedway
PSU 1100W PSU (80+ Platinum)

Intel's Xeon "Purley" Server – S2P2SY3Q (2U Chassis)

CPU Two Intel Xeon Platinum 8280  (2.7 GHz, 28c, 38.5MB L3, 205W)
Two Intel Xeon Platinum 8176  (2.1 GHz, 28c, 38.5MB L3, 165W)
RAM 384 GB (12x32 GB) Hynix DDR4-2666
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Micron 9300 3.84 TB (data)
Motherboard Intel S2600WF (Wolf Pass baseboard)
Chipset Intel Wellsburg B0
PSU 1100W PSU (80+ Platinum)

We enabled hyper-threading and Intel virtualization acceleration.

The BIG LIST of Rome CPUs: Core Counts and Frequencies Memory Subsystem: Bandwidth
Comments Locked

180 Comments

View All Comments

  • close - Thursday, August 8, 2019 - link

    VMware licenses per socket. I'm not sure what kind of niche market one would have to be in (maybe HPC on Windows with the HPC Pack?) to run Win server bare metal on this thing. So I'm pretty sure the average cores/VM for Windows servers is relatively low and no reason for concern.
  • schujj07 - Thursday, August 8, 2019 - link

    @deltaFx2 Most people purchase more cores than they currently need so that they can grow. In the long run it is cheaper to purchase a higher SKU right now than purchase a second host a year down the road.
    @close There are companies that are Windows only so they would install Hyper-V onto this host to use as their hypervisor. However, even under VMware if you want to license Windows as a VM you have to pay the per-core licensing for every CPU core on each VM. I looked into getting volume licensing for Server 2016 for the company I work for we have 2 hosts with dual 24 core Epyc 7401's and we would need to get 16 dual core license packs for each instance of Server 2016. It ended up that we couldn't afford to get Sever 2016 because it would have cost us $5k per instance of Server 2016.
  • DigitalFreak - Thursday, August 8, 2019 - link

    @schujj07 Just buy a Windows Server Datacenter license for each host and you don't have to worry about licensing each VM.
  • schujj07 - Thursday, August 8, 2019 - link

    AFAIK it doesn't work that way when you are running VMware. With VMware you will still have to license each one.
  • wolrah - Thursday, August 8, 2019 - link

    @schujj07 nope. Windows Server licensing is the same no matter which hypervisor you're using. Datacenter licenses allow unlimited VMs on any licensed host.
  • diehardmacfan - Thursday, August 8, 2019 - link

    This is correct. You do need to buy the licenses to match the core count of the hypervisor, however.
  • Dug - Friday, August 9, 2019 - link

    You still have to pay for cores on datacenter. Each datacenter license covers 2 cores with a minimum purchase of 8. So over 8 cores and you are buying more licenses. 64 cores is about $25k
  • MDD1963 - Friday, August 9, 2019 - link

    Windows license (Standard or Datacenter) covers 2 *sockets* for, a total of 16 cores....; if you have more than 2 sockets, you need more licenses...; if you have 2 sockets, filled with 8 core CPUs, you are good with one standard license... If you have 20 total cores, you need a standard license, and a pair of '2 core' add ons... If you have 32 cores, you need 2 full standard licenses....
  • MDD1963 - Friday, August 9, 2019 - link

    Datacenter is still licensed for 16 cores, with little 2 pack increments available, or, in the case of a 64 core CPU, effectively 4 Datacenter licenses would be required...($6k per 16 cores, or, roughly $24k)
  • deltaFx2 - Friday, August 9, 2019 - link

    @schujj07: Of course I get that. The OP @Pancakes implied that Rome was going to hurt the wallets of buyers using windows server. The implication being this would not happen if they bought Intel. I was questioning those assumptions. How can Rome cost more money for windows licenses unless rome needs more cores to get the same job done or enterprises overprovision Rome (in terms of total cores) vs. Intel. That would make sense if the per-thread performance is worse but it's not.

Log in

Don't have an account? Sign up now