HPC: NAMD

Developed by the Theoretical and Computational Biophysics Group at the University of Illinois Urbana-Champaign, NAMD is a set of parallel molecular dynamics codes for extreme parallelization on thousands of cores. NAMD is also part of SPEC CPU2006 FP. In contrast with previous FP benchmarks, the NAMD binary is compiled with Intel ICC and optimized for AVX and AVX-512.

The NAMD binary is compiled with Intel ICC, optimized for AVX and mostly single preciscion floating point (fp32).  For our testing, we used the "NAMD_2.13_Linux-x86_64-multicore" binary.  At some point we want to use this test with AOCC or similar AMD optimized binary, but were unable to do so for this review.

We used the most popular benchmark load, apoa1 (Apolipoprotein A1). The results are expressed in simulated nanoseconds per wall-clock day. We measure at 500 steps.

NAMD Molecular Dynamics 2.13

Even without AVX-512 and optimal AVX optimization, the 7742 is already offering the same kind of performance as an ultra optimized Intel binary on top of the top of the line Xeon 8280. When do an apples-to-apples comparison, the EPYC 7742 is no less than 43% faster. 

AMD claims a 35% advantage (3.8 ns/days vs 2.8 ns/days) and that seems to confirm our own preliminary benchmarking. 

Java Performance: Critical-jOPS First Impressions of 2x 64-Cores
Comments Locked

180 Comments

View All Comments

  • JoeBraga - Wednesday, August 14, 2019 - link

    It can happen if Intel uses the new archtecture Sunny Cove and MCM/Chiplet design instead of Monolithic Design
  • SanX - Thursday, August 15, 2019 - link

    7zip is not a legacy test, it is important for anyone who sends big data over always damn slow network. Do you know all those ZIPs, GZs and other zippers which people mostly use, compress with turtle speeds as low as 20 MB/s even on supercomputers ? The 7Zip though parallelizes that nicely. So do not diminish this good test calling it "legacy"
  • imaskar - Friday, August 16, 2019 - link

    7zip is a particular program, doing LZMA in parallel, that's why it is faster that lets say gzip. But on server you often do not want to parallel things, because other cores are doing other jobs and switching is costly. There are a lot of compressing algorithms which are better in certain situations. LZMA rarely fits. More often it is it's LZ4 or zstd for "generate once, consume many" or basic gzip (DEFLATE) for "generate once, consume once". Yes, you would be surprised, but the very basic 30 years old DEFLATE is still the king if you care for sum of compress, send, decompress AND your nodes are inside one datacenter (which is most of the times).
  • SanX - Thursday, August 15, 2019 - link

    What you can say about Ian's own test he developed to demonstrate avx512 speed boost which shows some crazy up to 3-4x or more speedups ? Does your test of Molecular Dynamics tell that Ian's test mostly irrelevant for such huge improvement of speed of the real life complex programs?
  • imaskar - Friday, August 16, 2019 - link

    Probably because you can't use ONLY avx512. You still need regular things like jumps and conditions. And this is only the best case. Usually you also need to process part of the vector differently. For example, your vector has size 20, but your width is 16. You either do another vector pass, or 4 regular computations. Often second thing is faster or just the only option.
  • realbabilu - Sunday, August 18, 2019 - link

    Most of finite element software use Intel mkl to get every juice power spec of processor.it works for Intel ones not for amd
    Amd math kernel not heavily programmed, otnwaa just for Linux.
    Other third party like gotoblas openblas still trying hard to detect cache and type for zen2.
    I mean for workstation floating point still hard for amd.
  • peevee - Monday, August 19, 2019 - link

    Prices per core-GHz:
    EPYC 7742 $48.26
    EPYC 7702 $50.39
    EPYC 7642 $43.25
    EPYC 7552 $38.12
    EPYC 7542 $36.64
    EPYC 7502 $32.50
    EPYC 7452 $26.93
    EPYC 7402 $26.53
    EPYC 7352 $24.46
    EPYC 7302 $20.38
    EPYC 7282 $14.51
    EPYC 7272 $17.96
    EPYC 7262 $22.46
    EPYC 7252 $19.15

    Value in this 7282 is INSANE.
  • peevee - Tuesday, August 20, 2019 - link

    "Even though our testing is not the ideal case for AMD (you would probably choose 8 or even 16 back-ends), the EPYC edges out the Xeon 8176. Using 8 JVMs increases the gap from 1% to 4-5%."

    1%? 36917 / 27716 = 1.3319...

    33%. Without 8 JVMs.
  • KathyMilligan - Wednesday, August 21, 2019 - link

    University of Illinois Urbana-Champaign is very good university. I am too poorly prepared for this level of education. But I'm getting ready. I read a lot of articles and books, communicate with many smart former students of this university. I also buy research papers on site and this gives me a lot of useful information, which is not so easy to find on the Internet.
  • YB1064 - Wednesday, August 28, 2019 - link

    Looks like Intel has been outclassed, out-priced and completely out-maneuvered by AMD. What a disaster!

Log in

Don't have an account? Sign up now