First Impressions

Due to bad luck and timing issues we have not been able to test the latest Intel and AMD servers CPU in our most demanding workloads. However, the metrics we were able to perform shows that AMD is offering a product that pushes out Intel for performance and steals the show for performance-per-dollar.

For those with little time: at the high end with socketed x86 CPUs, AMD offers you up to 50 to 100% higher performance while offering a 40% lower price. Unless you go for the low end server CPUs, there is no contest: AMD offers much better performance for a much lower price than Intel, with more memory channels and over 2x the number of PCIe lanes. These are also PCIe 4.0 lanes. What if you want more than 2 TB of RAM in your dual socket server? The discount in favor of AMD just became 50%. 

We can only applaud this with enthusiasm as it empowers all the professionals who do not enjoy the same negotiating power as the Amazons, Azure and other large scale players of this world. Spend about $4k and you get 64 second generation EPYC cores. The 1P offerings offer even better deals to those with a tight budget.

So has AMD done the unthinkable? Beaten Intel by such a large margin that there is no contest? For now, based on our preliminary testing, that is the case. The launch of AMD's second generation EPYC processors is nothing short of historic, beating the competition by a large margin in almost every metric: performance, performance per watt and performance per dollar.  

Analysts in the industry have stated that AMD expects to double their share in the server market by Q2 2020, and there is every reason to believe that AMD will succeed. The AMD EPYC is an extremely attractive server platform with an unbeatable performance per dollar ratio. 

Intel's most likely immediate defense will be lowering their prices for a select number of important customers, which won't be made public. The company is also likely to showcase its 56-core Xeon Platinum 9200 series processors, which aren't socketed and only available from a limited number of vendors, and are listed without pricing so there's no firm determination on the value of those processors. Ultimately, if Intel wanted a core-for-core comparison here, we would have expected them to reach out and offer a Xeon 9200 system to test. That didn't happen. But keep an eye out on Intel's messaging in the next few months.

As you know, Ice lake is Intel's most promising response, and that chip will be available somewhere in the mid of 2020. Ice lake promises 18% higher IPC, eight instead of six memory channels and should be able to offer 56 or more cores in reasonable power envelope as it will use Intel's most advanced 10 nm process. The big question will be around the implementation of the design, if it uses chiplets, how the memory works, and the frequencies they can reach.

Overall, AMD has done a stellar job. The city may be built on seven hills, but Rome's 8x8-core chiplet design is a truly cultural phenomenon of the semiconductor industry.

We'll be revisiting more big data benchmarks through August and September, and hopefully have individual chip benchmark reviews coming soon. Stay tuned for those as and when we're able to acquire the other hardware.

Can't wait? Then read our interview with AMD's SVP and GM of the Datacenter and Embedded Solutions Group, Forrest Norrod, where we talk about Napes, Rome, Milan, and Genoa. It's all coming up EPYC.

An Interview with AMD’s Forrest Norrod: Naples, Rome, Milan, & Genoa

HPC: NAMD
Comments Locked

180 Comments

View All Comments

  • wrkingclass_hero - Sunday, August 11, 2019 - link

    What does AMD have to do to get a Gold or Platinum recommendation?
  • oRAirwolf - Thursday, August 15, 2019 - link

    This is a good question
  • imaskar - Sunday, August 11, 2019 - link

    Single thread performance is very important for those who lives in cloud. A quick example: suppose I provision 2 core/4gig vm (this is of course hyperthreads). And on AWS I have a choice - m5 and m5a, where AMD is cheaper. What do I sacrifice? Not really throughput, because you don't run your prod workloads at 100% CPU. But there is the latency. If those cores clocked lower, I would get the same amount of responses, but slower. And since in microservice world you have a chain of calls, you get this decrease 10 times. Is it worth it?
    That was the case for 1st gen EPYC. Would 2nd gen have latency parity?
  • notashill - Sunday, August 11, 2019 - link

    It's hard to say until the cloud instances actually launch.

    The current m5a instances are using a custom SKU which is clocked at 2.5GHz max boost.

    Rome's IPC is ~15% higher and clock speeds are all around higher so single threaded performance should be quite a bit better, but ultimately the exact numbers will depend on which SKUs the cloud vendors decide to use and how high they clock.
  • duploxxx - Tuesday, August 13, 2019 - link

    did you actually ever work with hypervisors?

    there are other things than raw clock speed.... its all about scheduling and when there are more cores / socket available the scheduling is more relaxed, less ready time..... EPYC generation 1 is already awesome for hypervisor way better choice than most Intel counter parts for sure if you look at socket cost... but than again I am probably talking to a typical retard ****
  • JoeBraga - Wednesday, August 14, 2019 - link

    Can you Explain better? But the license isn't bought by the quantity of coresor Per socket?
  • imaskar - Wednesday, August 14, 2019 - link

    He probably talks about VmWare, which is licensed per socket, not per core. So with EPYC gen2 you need twice less licenses for the same cloud capacity (assuming cores are equal).
  • JoeBraga - Wednesday, August 14, 2019 - link

    Now I understood
  • imaskar - Wednesday, August 14, 2019 - link

    Rather than calling others retards, you could first dig a little deeper into an issue. No, I don't work with hypervisors directly, I'm from the other side. I write software and I want good latency (not insane one like for HFT, but still a good one). Because for throughput we could just spin one more instance. You can't buy latency horizontally.
    I'm not taking numbers out of the blue. There is a benchmark for AMD instances vs Intel instances on AWS. I'm not sure if we are allowed to post links to other resources here. Put this string into Google and you will surely find it: "A Look At The AMD EPYC Performance On The Amazon EC2 Cloud". Despite this article being very enthusiastic about those instances, you can really see that per core performance on Intel is better, meaning better latencies for web apps.
    I will probably write my own set of benchmarks, because that one seems to completely ignore web servers. I am very enthusiastic about AMD instances, but they are definitely not a no-brainer.
  • quadibloc - Tuesday, August 13, 2019 - link

    The new Ryzen chips compete well with what Intel is currently producing. But while they doubled AVX 2 support, so as to match what Intel has, Ice Lake will double that - as has been known for some time. So if this is what AMD thought would be competitive with Ice Lake, as Forrest Norrod said, AMD was not trying hard enough - and they're just lucky Ice Lake was late. AMD's position relative to Intel with its previous generations of Ryzens seems to be the limit of their ambitions. Combine that with Intel reacting to its current issues, and it looks to me that AMD will have to rethink some aspects of its strategy to avoid Intel being ahead when it comes time for next year's chips from both companies.

Log in

Don't have an account? Sign up now