AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

On the Heavy test, the caching unambiguously helps the Intel Optane Memory H10, bringing its average data rate up into the range of decent TLC-based NVMe SSDs, when the test is run on an empty drive. The full-drive performance is still better with the cache than without, but ultimately the post-SLC behavior of the QLC NAND cannot be hidden by the Optane. None of the TLC-based drives slow down when full as much as the QLC drives do.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latency scores for the H10 are competitive with TLC drives only when the test is run on an empty drive. When the Heavy test is run on a full drive with a full SLC cache and cold Optane cache, latency is worse than even the hard drive with an Optane cache. The average latency for the H10 in the full-drive case is still substantially better than using the QLC portion alone, but the Optane cache doesn't help the 99th percentile latency at all.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

Average read latencies from the H10 are significantly worse when the Heavy test is run on a full drive, but it's still slightly better than the SATA SSD. The average write latencies are where the QLC stands out, with a full H10 scoring worse than the hard drive, and with the Optane caching disabled write latency is ten times higher than for a TLC SSD.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

The 99th percentile read latency of the H10 with Optane caching off is a serious problem during the full-drive test run, but using the Optane cache brings read QoS back into the decent range for SSDs. The 99th percentile write latency is bad without the Optane cache and worse with it.

AnandTech Storage Bench - The Destroyer AnandTech Storage Bench - Light
POST A COMMENT

60 Comments

View All Comments

  • Alexvrb - Monday, April 22, 2019 - link

    "The caching is managed entirely in software, and the host system accesses the Optane and QLC sides of the H10 independently. "

    So, it's already got serious baggage. But wait, there's more!

    "In practice, the 660p almost never needed more bandwidth than an x2 link can provide, so this isn't a significant bottleneck."

    Yeah OK, what about the Optane side of things?
    Reply
  • Samus - Tuesday, April 23, 2019 - link

    They totally nerf'd this thing with 2x PCIe. Reply
  • PeachNCream - Tuesday, April 23, 2019 - link

    Linux handles Optane pretty easily without any Intel software through bcache. I'm not sure why Anandtech can't test that, but maybe just a lack of awareness.

    https://www.phoronix.com/scan.php?page=article&...
    Reply
  • Billy Tallis - Tuesday, April 23, 2019 - link

    Testing bcache performance won't tell us anything about how Intel's caching software behaves, only how bcache behaves. I'm not particularly interested in doing a review that would have such a narrow audience. And bcache is pretty thoroughly documented so it's easier to predict how it will handle different workloads without actually testing. Reply
  • easy_rider - Wednesday, April 24, 2019 - link

    Is there a reliable review of 118gb intel optane ssd in M2 form factor? Does it make sense to hunt it down and put as a system drive in the dual-m2 laptop? Reply
  • name99 - Thursday, April 25, 2019 - link

    "QLC NAND needs a performance boost to be competitive against mainstream TLC-based SSDs"

    The real question is what dimension, if any, does this thing win on?
    OK, it may not be the fastest out there? But does it, say, provide approximately leading edge TLC speed at QLC prices, so it wins by being cheap?
    Because just having a cache is meaningless. Any QLC drive that isn't complete garbage will have a controller-managed cache created by using the QLC flash as SLC; and the better controllers will slowly degrade across the entire drive, maintaining always an SLC cache, but also using the entire drive (till its filled up) as SLC, then switching blocks to MLC, then to TLC, and only when the drive is approaching capacity, using blocks as QLC.

    So the question is not "does it give cached performance to a QLC drive", the question is does it give better performance or better price than other QLC solutions?
    Reply
  • albert89 - Saturday, April 27, 2019 - link

    Didn't I tell ya ? Optane's capacity was too small for many yrs and compatible with a very tiny number devices/hardware/OS. She played the game of hard to get and now no guy wants her. Reply
  • peevee - Monday, April 29, 2019 - link

    "The caching is managed entirely in software, and the host system accesses the Optane and QLC sides of the H10 independently. Each half of the drive has two PCIe lanes dedicated to it."

    Fail.
    Reply
  • ironargonaut - Monday, April 29, 2019 - link

    "While the Optane Memory H10 got us into our Word document in about 5 seconds, the TLC-based 760P took 29 seconds to open the file. In fact, we waited so long that near the end of the run, we went ahead and also launched Google Chrome with it preset to open four websites. "

    https://www.pcworld.com/article/3389742/intel-opta...

    Win
    Reply
  • realgundam - Saturday, November 16, 2019 - link

    What if you have a normal 660p and an Optane stick? would it do the same thing? Reply

Log in

Don't have an account? Sign up now