Ice Lake 10nm Xeon Scalable On Display

One of the more sedate talks at the event was discussing Intel’s approach in the datacenter. We’ve covered this story in detail, especially at Intel’s Data-Centric Summit only a few months ago. Intel has stated that Cascade Lake and Cooper Lake are the next two products for the enterprise market, both built on 14nm, focusing on enhanced security as well as AI instructions to help with acceleration. We also know that after these two Intel will have Ice Lake Scalable built on 10nm, but that’s about it.

To be honest, we don’t actually know much more than what we did back then. Intel confirmed that Ice Lake will be built using Sunny Cove cores. But Intel also showed off what they said was an Ice Lake Xeon 10nm processor and package, as shown in the image above.

Color me skeptical, but what was held up is likely either not ICL-SP or just silicon that doesn’t work. In order to make those products, Intel would have to have pumped out at least one large (350mm2+?) die that worked and then put it into a package with a heatspreader. Intel finally seems to be happy discussing a few products on 10nm, as shown at this event, but all the 10nm hardware is based on tiny 100mm2 or smaller silicon. Given Intel’s documented problems, I would have loved that CPU that was held up in the air to be Ice Lake-SP. But I’ll need to see something more concrete to believe it at this point; it’s too much of a jump.

Ending Intel’s Architecture Day

As I’m writing this, it is 3am PT and only a couple of hours away from Intel’s listed embargo time. The event finished 10 hours ago (a few of us skipped the end event drinks to get to writing) and despite the short time to write it all up, it was a good event overall. For the first time in a good while, Intel decided to talk shop, and in an honest way with very little hand waving. One could argue that in every discussion point, Intel raised more questions than they answered, but the positive here is that questions are being answered, and Intel is willing to share things like roadmaps into 2021, demonstrations of some exciting new products for 2019/2020, and a taste of how they are progressing in both manufacturing and microarchitecture. Hopefully Intel will feel the same and this can become a yearly cadence. The trio of Keller, Koduri, and Murthy, is a strong team to field to the press, and this event fits that bill.

To end this piece, I’m going to put in the Q&A section from day’s presentations, as well as some of the questions put in my particular round-table. It’s an interesting read, and it helps that Jim is full of memorable quotes.

Intel’s First Fovoros and First Hybrid x86 CPU: Core plus Atom in 7 W on 10 nm Intel Made Something Really Funny: Q&A with Raja, Jim, and Murthy
Comments Locked

148 Comments

View All Comments

  • zodiacfml - Thursday, December 13, 2018 - link

    YES
  • Raqia - Thursday, December 13, 2018 - link

    For ultra-mobile, not only are battery/power/heat issues but supply is one as well due to Intel being locked down to their own manufacturing division. On top of that, they have a lock on x86 by not licensing to any competitors but AMD, who despite competitive stretches inevitably stumbles (either due to themselves or Intel's non-engineering financial efforts) and leaves the industry with dry spells of performance improvements. Intel's gross margins on their chips remain >60% as a result whereas ARM SoCs even after licensing is closer to 20-30%.
  • Raqia - Thursday, December 13, 2018 - link

    Keller declared that the technology is in its infancy, and feature wise the 2019 version of the Atom simply won't be competitive with leading ARM SoCs like the 8cx. The slowness you refer to only occurs when running native 32 bit x86 code on the WOW emulation layer, but the value of this feature is mostly in the compatibility being there at all. If performance and compatibility of legacy code matters to you then certainly Windows on Arm isn't suitable. However, it will matter even less now with the new native compilation tools and ports of important sub platforms like Chromium.
  • 29a - Thursday, December 13, 2018 - link

    "Windows on ARM is horribly slow and therefore shitty."

    Sounds a lot like Windows on Atom.
  • MonkeyPaw - Saturday, December 15, 2018 - link

    I’m betting Apple wanted one for MacBook Air, or maybe MS for Surface Go. It would be the right amount of performance for both devices, an both companies would have the clout to get it done. I’d lean toward Apple because the GPU is pretty big.
  • Kevin G - Wednesday, December 12, 2018 - link

    Typo:
    "a physical address space up to 52 bits. This means, according to Intel, that the server processors could theoretically support 4 TB of memory per socket."

    That should be petabytes instead of terabytes. The limit is for an entire system, not per socket as additional sockets will not grant any additional capacity.
  • gamerk2 - Thursday, December 13, 2018 - link

    NUMA systems could potentially be per-socket rather then OS wide.
  • HStewart - Wednesday, December 12, 2018 - link

    It sounds like Intel has been working on increasing performance in two ways
    1. 7nm change for the future - because of limitations found with 10nm
    2. 10nm enhance for corrections for performance of issues with Cannon Lake

    But most importantly, architexture improvements like faster single thread execution and new instructions and multi-core improvements will in long term significantly improve performance
  • ishould - Wednesday, December 12, 2018 - link

    Forgive me if I take 2 metric tons of salt with any roadmaps Intel provides these days. They haven't exactly had the most accurate timelines as of late (past four years)
  • HStewart - Wednesday, December 12, 2018 - link

    It appears they realize that and coming out with document to indicated they have made corrections - this is better than not knowing what they are planning - or as some AMD Fans would like to believe that they lost the battle.

Log in

Don't have an account? Sign up now