AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB - The Destroyer (Data Rate)

The Intel SSD 660p manages an average data rate on The Destroyer that is only slightly slower than the Crucial MX500 mainstream SATA SSD and the Kingston A1000 entry-level NVMe SSD. It's a step up from the performance of the 512GB Intel SSD 600p, and more than three times faster than the DRAMless Toshiba RC100.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

The average and 99th percentile latency scores for the Intel SSD 660p are quite poor by NVMe standards and significantly worse than the Crucial MX500, but the latency isn't completely out of control like it is for the Toshiba RC100.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

The average read latency from the 660p during The Destroyer is comparable to other low-end NVMe SSDs and better than the 600p or Crucial MX500. The average write latency is more than twice that of the MX500 but lower than the 600p and RC100.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The 99th percentile read latency from the Intel SSD 660p on The Destroyer is significantly worse than any other NVMe SSD or the Crucial MX500 SATA SSD, but the 99th percentile write latency is an improvement over the 600p and does not show the extreme outliers that the Toshiba RC100 suffers from.

ATSB - The Destroyer (Power)

The energy usage of the 660p during The Destroyer is a bit better than average for NVMe SSDs, though still quite a bit higher than is typical for SATA SSDs. The 660p is less power hungry than most NVMe drives and slower, but not enough to drag out the test for so long that the power advantage disappears.

Introduction AnandTech Storage Bench - Heavy


View All Comments

  • jjj - Tuesday, August 7, 2018 - link

    Not bad, at least for now when there are no QLC competitors.
    The pressure QLC will put on HDDs is gonna be interesting too.
  • npz - Tuesday, August 7, 2018 - link

    Well at least the price is reflected in the performance, with the MX500 beating the 660p when both are full. As far as scenarios where you'd go from SLC to QLC I would be much more cautious about generalizing too much. A lot of people use SSDs as scratch drives for their work (DAW, video editing, recording, etc) and it seems more than likely to hit it in those usage scenarios Reply
  • StrangerGuy - Tuesday, August 7, 2018 - link

    "A lot of people use SSDs as scratch drives for their work (DAW, video editing, recording, etc)"

    A lot of people relative to the entire market? No.
    Is this drive intended for power users/professionals? No.
    Is QLC bringing a lot more GB/$ at MSRP prices for 90%+ of the market? Yes.
    Is the worst case performance even remotely applicable to its intended market? No
    So did you just say a dumb comment while disguised a concern troll? Yes.
  • npz - Wednesday, August 8, 2018 - link

    A lot people who would bother purusing sites like Anandtech yes. The people who would run more comprehensive benchmarks, as opposed to just buying a cheap SSD is the lot of people in the alot of.. I refer to. Of course you just disregarded the rest of my statement acknowleding the fact that it's cheap didn't you? Just so you could go on with your smart ass here. Reply
  • npz - Wednesday, August 8, 2018 - link

    And I specifically refer to "worst case" because I argue it is NOT worst case, but it becomes a rather typical case for certain use--going out of SLC to QLC, which would NOT be seen by just quick benchmarks like a lot of people cite on Amazon reviews via Crystaldisk benchmarks. Reply
  • Valantar - Wednesday, August 8, 2018 - link

    a) If you're enough of a power user to need a scratch disk and use it heavily enough to fill its SLC cache, you really ought to be buying proper equipment and not low-end drives.
    b) if you're -"- you really ought to educate yourself about your needs, or employ someone with this knowledge
    c) If you're not -"-, stop worrying and enjoy the cheap SSDs.

    Tl;dr: workstation parts for workstation use; cheapo parts for basic use.
  • damianrobertjones - Tuesday, August 7, 2018 - link

    These drives will fill the bottom end... allowing the mid and high tiers to increase in price. Usual. Reply
  • Valantar - Wednesday, August 8, 2018 - link

    Only if the performance difference is large enough to make them worth it - which it isn't, at least in this case. While the advent of TLC did push MLC prices up (mainly due to reduced production and sales volume), it seems unlikely for the same to happen here, as these drives aim for a market segment that has so far been largely unoccupied. (It's also worth mentioning here that silicon prices have been rising for quite a while, and also affects this.) There are a few TLC drives in the same segment, but those are also quite bad. This, on the other hand, competes with faster drives unless you fill it or the SLC cache. In other words, higher-end drives will have to either aim for customers with heavier workloads (which might imply higher prices, but would also mean optimizations for non-consumer usage scenarios) or push prices lower to compete. Reply
  • romrunning - Wednesday, August 8, 2018 - link

    Well, QLC will slowly push out TLC, which was already pushing out MLC. It's not just pushing the prices of MLC/TLC up, mfgs are slowing phasing those lines out entirely. So even if I want a specific type, I may not be able to purchase it in consumerspace (maybe enterprise, with the resultant price hit).

    I hate that we're getting lower-performing items for the cheaper price - I'd rather get higher-performing at cheaper prices! :)
  • rpg1966 - Tuesday, August 7, 2018 - link

    "In the past year, the deployment of 64-layer 3D NAND flash has allowed almost all of the SSD industry to adopt three bit per cell TLC flash"

    What does this mean? n-layer NAND isn't a requirement for TLC is it?

Log in

Don't have an account? Sign up now