Bigfoot’s Killer Wireless-N 1102: Living up to Its Name

This is one of the few times I’ve tested a product that surprised me. I figured all wireless adapters were pretty much the same, but my experience with the Killer Wireless-N 1102 card has been excellent. I can’t say I’ve ever felt wireless networking was something to worry about, but now I’ll need to reconsider. Wading through the notebooks I have on hand, I’m actually surprised at how many of them use cheap 1x1:1 2.4GHz adapters, even on $1500+ notebooks. No wonder I haven’t been impressed with wireless throughput in the past!

Going into this review, I felt that the wireless world had largely stagnated, but it turns out that I’m probably the one falling behind. I have felt on occasion that my Netgear WNR3500L router was holding me back, but I didn’t realize how much. (Before that, I had a TrendNET TEW-633GR 3x3:3 2.4GHz router that I thought was “good enough”…except for the occasional crashes and restarts. Yuck!) Testing with the Linksys E4200 router on a 5GHz radio has opened my eyes to the source of my problems: the 2.4GHz spectrum is just too crowded, so you almost never get 40MHz channels and higher connection rates. With the right router, suddenly the difference between budget WiFi adapters and expensive 3x3:3 solutions starts to make sense. Wireless networking has improved in other ways as well. For one, size matters. My oldest laptops have comparatively huge mini-PCIe adapters, and most of those aren’t even 802.11n capable. Now you can get a highly integrated 3x3:3 chip in a half-height, with the potential for Bluetooth in some cases as well.

That brings us to the star of today’s review, the Killer Wireless-N 1102. Throughput is generally equal to or better than equivalent solutions, and it can even outperform Intel’s top Ultimate-N 6300 is many tests, despite having one less spatial stream available. That’s not the real selling point, though; it’s the software, drivers, and optimizations to improve latency that allows the 1102 stand out. If the latency only helped in gaming, that might be enough, but the small file copy times show that it’s useful for non-gamers as well. I routinely copy large amounts of files and data between PCs, and in the past I’ve always felt the need to do that over a wired connection. I’m still inclined to go that route if I’m moving more than a couple gigabytes, because even the best wireless networks still fall short of Gigabit Ethernet. However, copying lots of smaller files ends up being faster than 100Mb Ethernet for a change, and if I’m not in a hurry 15-25MiB/s will get most transfers done fast enough to make hassling with wires unnecessary.

Something else that surprised me is the pricing; the Killer 1102 is roughly a $15 upgrade from Intel’s 6230, and if you’re looking at a gaming laptop, $15 is chump change. Given their earlier $200+ Killer NICs, I was afraid when Bigfoot first approached me that we’d see a repeat of such prices, but I’m happy to say that’s not the case. The Killer 1102 (and 1103) might cost a bit more than other wireless solutions, but if you care about wireless performance and latency, a $15 to $20 upgrade is reasonable.

My biggest concern is that, as good as the Killer Wireless-N is, many users will likely never notice. Faster UDP throughput generally isn’t a problem, and with most broadband connections pushing less than 20Mbps, the difference between a 144Mbps 1x1:1 connection and a 450Mbps 3x3:3 connection for Internet use is negligible. Even the lower ping times won’t matter all that much for online gaming, since a good 40ms connection between your router and a game server means the Killer Wireless-N might get 41ms average latency compared to 45-50ms on competing solutions. The removal of jitter will be a bigger benefit, but only hardcore gamers are likely to notice. Ironically, for gaming purposes Realtek’s 1x1:1 RTL8188CE is right up there with the Killer 1102 in terms of latency, and unlike the Intel and Atheros chipsets I didn’t see any large spikes during testing. (Broadcom’s BCM94322 is another 2x2:2 device that appears to have good latency in some initial testing, and it’s available with dual-band and Bluetooth support; I didn’t have time to run the full suite of tests on that card yet, unfortunately.) If you regularly use Bluetooth, you don’t do much network gaming, and/or you don’t routinely copy lots of small files, the upsell to an 1102 probably won’t be that enticing.

Ultimately, given the choice between two laptops, one with a Killer wireless adapter and one with a competing adapter, I’d prefer to get the Killer—especially on higher end notebooks. Budget and mainstream laptops can likely make do with whatever wireless adapter comes preinstalled, or look at upgrading the graphics and/or CPU before worrying about things like wireless performance. Nevertheless, if you are interested in improved wireless performance, go ahead and spend the extra money. Just don’t try using a Killer Wireless-N adapter in a crowded apartment complex with dozens of wireless routers on the 2.4GHz spectrum and then wonder why it doesn’t seem any better than your old wireless adapter.

That brings us to the final recommendation. Before buying a new laptop with the Killer Wireless-N, make sure you have a high quality router. The Linksys E4200 generally works well, but I’d be more inclined to go with Apple’s Airport Extreme. The Linksys and Airport extreme cost the same and the Airport Extreme has 3x3:3 2.4GHz support and arguably better overall performance. Then again, long-term if you’re a fan of DD-WRT you might be better off with the Cisco 4200/Linksys E4200, as the DD-WRT project has plans to add support for the 4200 but not the Airport Extreme. Once you have the router side under control, then by all means look at getting Bigfoot’s speedy Killer Wireless-N for your laptop(s).

Thanks also to Mythlogic for providing us with the test laptops. We’ll have a full review of their Pollux 1400 (Clevo W150HR) in the near future.

Update: Interestingly, Mythlogic just emailed me to inform me that they're also selling the Bigfoot 1102 and 1103 adapters via Amazon. You can grab the 1102 for $40, or go whole hog with the 1103 for $60. By comparison, Intel's 6200 goes for $24 and their 6300 costs $35 (though the latter is currently out of stock). So, if you have an laptop with poor wireless that you'd like to upgrade, you can take the plunge.

Killer Network Manager and Other Thoughts
Comments Locked

52 Comments

View All Comments

  • DesktopMan - Wednesday, August 10, 2011 - link

    What's the reason for the big difference with these results: http://www.smallnetbuilder.com/wireless/wireless-r...

    Anyone know?
  • Reflex - Wednesday, August 10, 2011 - link

    Probably different laptops. This review is unfortunatly not very good because if I'm reading the first couple pages correctly, he used different laptops for each card. Contrary to his earlier experience, most laptops will accept any wifi card you wish. I swapped in a 6300 in my Dell a year ago and it works great.

    They need to establish a baseline testing platform to isolate the perf between the cards. Testing them all on different laptops invalidates the test. Hard drives, CPU's, memory speed, etc can have a *huge* impact on wifi performance, especially for file copy type operations. And the range test is completely irrelevant as everyone has their own way of routing the antennas up through the lid.
  • JarredWalton - Wednesday, August 10, 2011 - link

    For wireless, the storage actually matters almost not at all. I swapped in an HDD to one of the laptops and ran the two file copy tests. The HDD was withing 1 second of the SSD for the large file, and within 3 seconds on the small files. On GbE, HDD vs. SSD is a huge disparity, but with WiFi topping out at <30MBps it really doesn't matter much. The WiFi latency appears to be almost as bad as the HDD latency for seek operations.

    But you're right: the different laptops all make it hard to to apples-to-apples, and depending on vendor swapping in a different WiFi card may or may not work. The real issue for me was lack of time; I kept going back and forth between devices as I discovered a potential issue with one of the results. Now that I'm more comfortable with what WiFi testing entails, I'm hoping (not right now, but maybe in a couple months) to go through and test a bunch of cards in a single laptop, as well as in a PCI-E x1 desktop adapter.
  • endrebjorsvik - Sunday, August 14, 2011 - link

    This puzzles me as well. The last couple of days I have been struggling with getting decent performance from my own setup. I have a Netgear WNDR3700v2 and a Lenovo X220 fitted with i5-2520M and Intel 6300 3x3 and running W7. A HP ProLiant ML110 G6 with GbE and 4x2TB RAID-Z is serving the test-files.
    According to smallnetbuilder.com, the WNDR3700v2 ( http://www.smallnetbuilder.com/wireless/wireless-r... ) should be faster than WNR3500L ( http://www.smallnetbuilder.com/wireless/wireless-r... ), so my setup should at least be as fast as Jarred's Netgear-Intel6300-Ideal-result (154 Mb/s).
    I have tried both 2,4 and 5 GHz with both 20 and 40 MHz BW and with both stock and open firmware (dd-wrt), but I don't even get to 90 Mb/s (Windows file transfer tops out at 11 MB/s = 88 Mb/s, and usually stays below 10 MB/s). The distance between the router and laptop is ~6 feet, and I have tried every possible position of the router (different antenna directions). The laptop lid is open (~90 degrees).

    So I wonder if you (Jarred) came across any mindblowing tricks that increased the throughput dramatically? Or was the Netgear-Intel6300-combo just plug'n'play?
  • JarredWalton - Sunday, August 21, 2011 - link

    What are you copying from? 11MB/s max sounds like you've got the Ethernet side hooked up to a 100Mb port, or else you're doing a transfer from one wireless PC to another? In that case, you'd be doing 22MB/s of wireless traffic, which would be pretty good considering collisions and such.
  • ss284 - Wednesday, August 10, 2011 - link

    It would have been really great if a recent macbook's wireless throughput was tested. I believe all the recent refreshes have the same broadcom based wireless adapter.
  • xdrol - Wednesday, August 10, 2011 - link

    "the number of streams cannot be more than the larger of the transmit/receive chains (so 2x2:3 isn’t possible, but 2x3:3 is)"

    No it is not. It cannot be more than the SMALLER of the two. But the transmit and receive antennas are on a different device, so a given device could support more than it's Tx/Rx antennas, but only in the other direction (where it does have more antennas).

    As for specifying what 1 given device can do, then there are actually 4 different numbers, 3 are not enough:
    - The number of Tx antennas (a)
    - The number of spatial streams to be received (<=a)
    - The number of Rx antennas (b)
    - The number of spatial streams to be transmitted (<=b)

    As WiFi is a symmetrical system, the Tx and Rx features of a device are usually the same (read: I'm yet to see any that differ) - unlike e.g. LTE, where the usual MIMO currently is only downlink, but not uplink (it has different PHY for uplink anyway).

    In the example, the 2x3:3 is valid only if you meant it has 2 Tx antennas, 3 Rx antennas, and it can RECEIVE 3 spatial streams. As it has only 2 antennas, the maximum outbound spatial streams is 2.
  • Brian Klug - Wednesday, August 10, 2011 - link

    That's technically right, and we do mention that the Intel 1030 can do two streams on Rx and one on Tx, but I've seen very few routers actually support an asymmetrical MIMO scheme like that. Even the intel card for example always only shows 1 stream being used for Tx and Rx, so in practice really it should be symmetrical.

    -Brian
  • James5mith - Wednesday, August 10, 2011 - link

    Maybe I'm used to living in smaller places, but 60 feet from your front door to the router? That seems a bit extreme. Is the router in the attic, and the front door in the basement corner of the house or something?
  • James5mith - Wednesday, August 10, 2011 - link

    Actually, more to the point, if it's 60 ft to your front door, then your google maps view shows the Intel 6300 making it nearly 500 ft from the router in the Cisco 2.4GHz test. You stated it was 200 ft.

Log in

Don't have an account? Sign up now