Overclocking Controversy

It wasn’t until the Pentium II that Intel started shipping multiplier locked CPUs. Before then you could set the multiplier on your CPU to anything that was supported by the line, and if you had a good chip and good enough cooling you just overclocked your processor. Intel’s policies changed once remarking, the process of relabeling and reselling a lower spec CPU as a higher one, started to take off.

While multipliers were locked, Intel left FSB overclocking open. That would be an end user or system integrator decision and not something that could be done when selling an individual CPU. However, ever since before the Pentium III Intel had aspirations of shipping fully locked CPUs. The power of the enthusiast community generally kept Intel from exploring such avenues, but we live in different times today.

Two things have changed Intel’s feelings on the topic. First and foremost is the advent of Turbo Boost. So long as Intel doesn’t artificially limit turbo modes, we now have the ability to run CPUs at whatever clock speed they can run at without exceeding thermal or current limits. We saw the first really exciting Turbo with Lynnfield, and Sandy Bridge is going to expand on that as well. On the flip side, Intel has used Turbo as a marketing differentiator between parts so there’s still a need to overclock.

The second major change within Intel is the willingness to directly address the enthusiast community with unlocked K-series SKUs. We saw this recently with the Core i7 875K and Core i5 655K parts that ship fully unlocked for the overclocking community.


The K-series SKUs, these will be more important with Sandy Bridge

With Sandy Bridge, Intel integrated the clock generator, usually present on the motherboard, onto the 6-series chipset die. While BCLK is adjustable on current Core iX processors, with Sandy Bridge it’s mostly locked at 100MHz. There will be some wiggle room as far as I can tell, but it’s not going to be much. Overclocking, as we know it, is dead.

Well, not exactly.

Intel makes three concessions.

First and foremost we have the K-series parts. These will be fully unlocked, supporting multipliers up to 57x. Sandy Bridge should have more attractive K SKUs than what we’ve seen to date. The Core i7 2600 and 2500 will both be available as a K-edition. The former should be priced around $562 and the latter at $205 if we go off of current pricing.

Secondly, some regular Sandy Bridge processors will have partially unlocked multipliers. The idea is that you take your highest turbo multiplier, add a few more bins on top of that, and that’ll be your maximum multiplier. It gives some overclocking headroom, but not limitless. Intel is still working out the details for how far you can go with these partially unlocked parts, but I’ve chimed in with my opinion and hopefully we’ll see something reasonable come from the company. I am hopeful that these partially unlocked parts will have enough multipliers available to make for decent overclocks.

Finally, if you focus on multiplier-only overclocking you lose the ability to increase memory bandwidth as you increase CPU clock speed. The faster your CPU, the more data it needs and thus the faster your memory subsystem needs to be in order to scale well. As a result, on P67 motherboards you’ll be able to adjust your memory ratios to support up to DDR3-2133.

Personally, I’d love nothing more than for everything to ship unlocked. The realities of Intel’s business apparently prevent that, so we’re left with something that could either be a non-issue or just horrible.

If the K-series parts are priced appropriately, which at first indication it seems they will be, then this will be a non-issue for a portion of the enthusiast market. You’ll pay the same amount for your Core i7 2500K as you would for a Core i5 750 and you’ll have the same overclocking potential.

Regardless of how they’re priced, what this is sure to hurt is the ability to buy a low end part like the Core i3 530 and overclock the crap out of it. What Intel decides to do with the available multiplier headroom on parts further down the stack is unknown at this point. If Intel wanted to, it could pick exciting parts at lower price points, give them a few more bins of overclocking headroom and compete in a more targeted way with AMD offerings at similar price points. A benevolent Intel would allow enough headroom as the parts can reliably hit with air cooling.

The potential for this to all go very wrong is there. I’m going to reserve final judgment until I get a better idea for what the Sandy Bridge family is going to look like.

The Roadmap & Pricing The Test
Comments Locked

200 Comments

View All Comments

  • tatertot - Tuesday, August 31, 2010 - link

    Can you also confirm whether or not the GPU turbo was also disabled?
  • DanNeely - Saturday, August 28, 2010 - link

    Do you think Intel will be sharing preliminary performance/pricing data on LGA 2011 by the time that the first LGA 1155 parts start shipping? I'm on 1366 now and would like to know if staying on the high end platform will be a reasonable option or if there isn't any point in holding off for another 6 months on my upgrade.
  • Anand Lal Shimpi - Saturday, August 28, 2010 - link

    I wouldn't expect any near-final LGA-2011 performance data until Q2 next year, well after the LGA-1155 launch.

    Take care,
    Anand
  • Casper42 - Saturday, August 28, 2010 - link

    2 things jumped out at me

    1) No USB3 - Major FAIL. Putting USB3 in an Intel chipset will drive huge adoption rates rather than this limping in BS by manufacturers today. Not to mention that for Hard Drives, USB2 has been a bottleneck for a long time whereas only top end SSDs today are maxing out SATA3

    2) 2 chips with Quad Core and no HT that are identical except for Clock speed and one of them is essentially the 400 and the other is the 500? WTF? Call them the 2410, 2420, 2430, etc. That gives you like 8 or 9 speed bins for that family. Whomever is doing the numbering at Intel needs a swift kick to the head to get them back on track mentally as things just get more and more confusing. You have the i3/i5/i7 today, why not just change it to:
    i2 = Dual Core no HT/Turbo
    i3 = Dual Core with HT and/or Turbo
    i4 = Quad Core no HT/Turbo
    i5 = Quad WITH
    i6 = Six without
    etc
    As it stands now we have i5 with both dual and quad core and i7 with 4 and 6. just doesnt make sense.
  • dertechie - Saturday, August 28, 2010 - link

    That's quite the IPC improvement there. Not quite Netburst to Core 2 but a lot more than I expected (I was expecting something on the order of 5%, with most gains coming from ramping clocks with the extra headroom of 32nm).

    Question is, do I want the i5-2500K more than I loathe Intel's motherboard department? I'm seeing them bring out new sockets almost as often as new processor families, which really, really does not make me confident in the socket's future.

    I will wait at least for Bulldozer benches before buying whatever makes sense at that time (okay, probably weighted in AMD's favor). I've lasted 4 years on this Pentium D, I can live another half of one.
  • IntelUser2000 - Saturday, August 28, 2010 - link

    Why do some people still compare Netburst vs. Core 2? The Pentium 4 generation was a clock speed focused that that FAILED to realize its clock speed potential so it looked really bad compared to Core 2.

    Compared to Core Duo Core 2 was only 15-20% faster. Sandy Bridge manages to do another 20%, which is really good in a generation, yea?
  • ssj4Gogeta - Saturday, August 28, 2010 - link

    Pentium D to SB will be such a huuuuge jump, lol.
  • neslog - Saturday, August 28, 2010 - link

    Your excellent article was exciting to read. Thank you!

    I noticed a small typo on the Windows 7 Gaming Performance page in the first line under the Data Recovery chart : "Clock for clock...to the i7{5} 760..."
  • ET - Saturday, August 28, 2010 - link

    I think that the integrated graphics here are a game changer. Sure nobody will look to them for serious gaming, but finally they're at a point where if you buy any CPU you will be able to play most games, even if at low settings. I'll be looking forward especially to the mobile CPU's. With Bobcat around the corner, I guess next year we will finally see mainstreams notebooks become capable of some game playing, which will be great (and bad for NVIDIA).
  • Exodite - Saturday, August 28, 2010 - link

    What I'd like to see is something like Nvidia's Optimus make it to the desktop. With both AMD and Intel going for on-chip integrated graphics the market is practically begging for a unified standard for graphics switching.

    The next-generation IGPs look to be competent enough for anything but high-end gaming, which means I should be able to power down my discrete graphics card completely most of the time. The end result would be significant reductions in noise generation, power usage and heat emissions.

    Having discreet graphics cards reduced to basically connector-less, slot-in cards for on-demand co-processing seems the logical step.

Log in

Don't have an account? Sign up now