Conclusion & First Impressions

The new Snapdragon 888 is overall a very impressive package from Qualcomm, advancing the most important areas for which today’s smartphones are being used. 5G connectivity was the big new feature of 2020 SoCs and smartphones, and the new 888 platform represents the evolution and maturing of the new technologies that had been introduced in prior generations.

The big focus point of the Snapdragon 888 were clearly AI and cameras. The new Hexagon 780 IP block looks immensely impressive and to me seems like a major competitive advantage of the new SoC design – other vendors which aren’t as vertically integrated with their accelerator IPs will have to respond to Qualcomm’s new advancements as it seems like a major performance advantage that will be hard to mimic.

Today’s flagship smartphones have diminished ways of differentiating themselves from one another, with the cameras still being the one aspect where vendors still have very different approaches to their designs. Qualcomm’s push for a triple-ISP system in the Snapdragon 888 pushes the upper limits of what vendors will be able to do on their smartphones, allowing for a continued push for the smartphone camera ecosystem. Even for still-picture camera experiences, it seems that Qualcomm is expecting a more notable technology jump in 2021 as we see the introduction of new sensors and imaging techniques, enabled by the new SoC.

The new CPU configuration gives the new SoC a good uplift in performance, although it’s admittedly less of a jump than I had hoped for this generation of Cortex-X1 designs, and I do think Qualcomm won’t be able to retain the performance crown for this generation of Android-SoCs, with the performance gap against Apple’s SoCs also narrowing less than we had hoped for.

On the GPU side, the new 35% performance uplift is extremely impressive. If Qualcomm is really able to maintain similar power figures this generation, it should allow the Snapdragon 888 to retake the performance crown in mobile, and actually retain it for the majority of 2021.

The new Snapdragon 888 to me looks like a continuation of Qualcomm’s excellent execution over the last few years. Striking a balance between performance, power efficiency, and features is something that may be harder than it sounds, and Qualcomm’s engineering teams here seem to be focused on being able to deliver the overall best package.

Much like the Snapdragon 865, and the last couple of generations of Snapdragon SoCs before it, I expect the new Snapdragon 888 to be an excellent foundation for 2021’s flagship devices, and I’m looking forward to experience the new generation.

Related Reading:

Triple ISPs: Concurrent Triple-Camera Usage
Comments Locked

123 Comments

View All Comments

  • jaj18 - Thursday, December 3, 2020 - link

    It will come with adreno 7××🤔
  • StormyParis - Wednesday, December 2, 2020 - link

    "This year although we’re not reporting from Hawaii". Heh heh. I'd feel sorry for you if I wasn't jealous for all the other years ? ;-p
  • Krysto - Wednesday, December 2, 2020 - link

    No AV1 decode support in 2021? Really?
  • tuxRoller - Thursday, December 3, 2020 - link

    I'm more interested in accelerated encode at this point.
    We've not had industry wide buy-in of a new lossy codec since jpeg, and hevc haven't quite achieved the ubiquity that h.264 managed after the same time in market.
  • GeoffreyA - Thursday, December 3, 2020 - link

    While hardware AV1 encode would be quite nice to see, there's a possibility it will lose much of software AV1's gains over software HEVC (that is, one might encode quickly but end up with less compression than x265). Also, leaving aside the Slough of Patents for a moment, VVC will have to be taken into account once x266 comes out. If the studies are right, the reference VVC encoder (not x266) already shows better compression and speed than AV1. Hopefully, it won't inherit HEVC's less than pleasing picture too (to my eyes at least).
  • tuxRoller - Friday, December 4, 2020 - link

    That's a great point. In my haste to mention the lack of encoding ability I'd forgotten about the actual implementation of such a complicated codec. Which of the 30 or so tools, and their combinations, provide the most bit savings per mm²?
    Iirc, vvc owes a lot of its gains via integration with ml (there's at least one commercial av1 implementation that does this as well to, supposedly, great effect). IOW, I'm uncertain how much easier vvc will be too implement in hardware. Otoh, EVC looks quite interesting.
  • GeoffreyA - Friday, December 4, 2020 - link

    Oh, yes, it will probably make their heads spin implementing this thing in hardware, and when they do, which they will, they're going to make it a marketing point (even if, in practice, it fell behind x265).

    Yesterday I was experimenting with libaom-av1 on FFmpeg and discovered a useful parameter: -cpu-used. Controls compression/encoding speed and takes values between 0 and 8. 0 being the slowest, 1 the default, and 8 fastest. To my surprise, 8 brought encoding speed to reasonable levels: about 10x slower than x265, if I remember right, which isn't half bad. I was using a video shrunk to 360p though.

    As for VVC, can't wait to give it a go. Hopefully, it'll deliver and be of AVC's calibre. I wasn't familiar with EVC but took a look at it now, and it does appear to be quite an interesting concept.
  • tuxRoller - Saturday, December 5, 2020 - link

    You might be interested in the doom9 forums (https://forum.doom9.org/forumdisplay.php?f=17). In the av1 thread you'll often see people posting updates about the various av1 en/decode implementations, new settings and, in general, some interesting thoughts from folks in the industry.
    BTW, starting from this post (https://forum.doom9.org/showthread.php?p=1929560#p... there's an interesting discussion regarding qcom & their interest in not pushing av1.
    Regarding fast encoders, I'm assuming you've tried svt-av1? That's supposed to have nearly caught up with aom's encoder quality but is still a good deal faster.
    Lastly, thanks for the paper. It looks interesting and a quick skim didn't reveal any mention of ml enhanced transform, or even a new entropy code(!); they seem to be continuing to iterate on h.264->h.265. However, only started reading it and realized I'm not getting through that tonight:)
  • GeoffreyA - Saturday, December 5, 2020 - link

    Thanks for those doom9 threads. Looks like a treasure trove of information on AV1 there. As for SVT-AV1, yes, I have tried it. While the speed was good, the picture didn't seem that impressive. Anyhow, I'll have a crack at it again and see how it stacks up against libaom, now that I've got the latter running faster.

    You're right. I remember getting the impression that this was similar to how HEVC improved over H.264. Mostly, extending techniques already laid down. Yet another reason to tip one's hat to the MP3 of video.
  • GeoffreyA - Saturday, December 5, 2020 - link

    I found this some weeks ago. It goes into some lower-level details of VVC.

    https://www.cambridge.org/core/services/aop-cambri...

Log in

Don't have an account? Sign up now