SPEC2006 & 2017: Industry Standard - ST Performance

Single-threaded performance of the new M1 is certainly one of its key aspects, where the new Firestorm cores definitely punch far above their power class. We had hinted in our preview A14 analysis article that the M1 may well be ending up as not only the top-performing low-power mobile CPU out there, but actually end up as the top-performing absolute performance amongst all CPUs in the market. The A14 fell short of that designation, but the M1 is an even faster implementation of the new Firestorm cores.

It’s to be noted that we’re comparing the M1 to the absolute best desktop and laptop platforms on the market right now, solely looking at absolute best single-threaded performance.

SPECint2006 Speed Estimated Scores

In SPECint2006, we’re now seeing the M1 close the gap to AMD’s Zen3, beating it in several workloads now, which increasing the gap to Intel’s new Tiger Lake design as well as their top-performing desktop CPU, which the M1 now beats in the majority of workloads.

Since our A14 results, we’ve been able to track down Apple’s compiler setting which increases the 456.hmmer by such a dramatic amount – Apple defaults the “-mllvm -enable-loop-distribute=true” in their newest compiler toolchain whilst it needs to be enabled on third-party LLVM compilers. A 5950X with the flag enabled increases its score to 91.64, but also while seeing some regressions in other tests. We haven’t had time to re-test further platforms.

The M1’s performance boost in 462.libquantum is due to the increased L2 cache, as well as the doubled memory bandwidth of the system, something that this workload is very hungry of.

SPECfp2006(C/C++) Speed Estimated Scores

In the fp2006 workloads, we’re seeing the M1 post very large performance boosts relative to the A14, meaning that it now is able to claim the best performance out of all CPUs being compared here.

SPEC2006 Speed Estimated Total

In the overall score, the M1 increases the scores by 9.5% and 17% over the A14. In the integer score, the M1 takes the lead here, although if we were to account for the 456.hmmer discrepancy it would still favour the Zen3-based 5950X. In the floating-point score however, the Apple M1 now takes a large lead ahead, making it the best performing CPU core.

We’ve had a lot arguments about whether 2006 is relevant or not in today’s landscape. We have practical reasons for not yet running SPEC2017 on mobile devices, but given that the new Apple Silicon M1 runs on macOS, these concerns are not valid, thus enabling us to also run the more modern benchmark suite.

It’s to be noted that currently we do not have a functional Fortran compiler on Apple Silicon macOS systems, thus we have to skip several workloads in the 2017 suite, which is why they’re missing from the graphs. We’re concentrating on the remaining C/C++ workloads.

SPECint2017(C/C++) Rate-1 Estimated Scores

The situation doesn’t change too much with the newer SPECint2017 suite. Apple’s Firestorm core here remains extremely impressive, at worst matching up Intel’s new Tiger Lake CPU in single-threaded performance, and at best, keeping up and sometimes beating AMD’s new Zen3 CPU in the new Ryzen 5000 chips.

Apple’s performance is extremely balanced across the board, but what stands out is the excellent 502.gcc_r performance where it takes a considerable leap ahead of the competition, meaning that the new Apple core does extremely well on very complex code and code compiling.

SPECfp2017(C/C++) Rate-1 Estimated Scores

In SPECfp2017, we’re seeing something quite drastic in terms of the scores. The M1 here at worst is a hair-width’s behind AMD’s Zen3, and at best is posting the best absolute performance of any CPU in the market. These are incredible scores.

SPEC2017(C/C++) Rate-1 Estimated Total

In the overall new SPEC2017 int and fp charts, the Apple Silicon M1 falls behind AMD’s Zen3 in the integer performance, however takes an undisputable lead in the floating-point suite.

Compared to the Intel contemporary designs, the Apple M1 is able to showcase a performance leap ahead of the best the company has to offer, with again a considerable strength in the FP score.

While AMD’s Zen3 still holds the leads in several workloads, we need to remind ourselves that this comes at a great cost in power consumption in the +49W range while the Apple M1 here is using 7-8W total device active power.

M1 GPU Performance: Integrated King, Discrete Rival SPEC2017 - Multi-Core Performance
Comments Locked

682 Comments

View All Comments

  • Spunjji - Monday, November 23, 2020 - link

    @Kangal - I have a few disagreements with what you've written here.

    Firstly, I'm a little confused about why you see the Rosetta-based benchmarks as most relevant. I doubt that anyone buying an M1 device today will be getting rid of it before the majority of apps are converted across, so that performance is going to become increasingly *less* relevant as time passes.

    Secondly, this quote: "In short, Apple played it safe and didn't really do their best. That means they purposely left performance on the table, it was artificial and it was deliberate." - I just don't see how you could draw that conclusion. They used their highest-performing cores in the largest chip yet produced on 5nm. It would be bizarre for them to begin such a grand experiment from the top-down - it would produce an odd situation where their most demanding users, who are most likely to be using applications that currently need translation, would be expected to transition to an incomplete ecosystem with performance that doesn't exceed existing systems.

    To me, it makes perfect sense from both an engineering and a product perspective. They begin the transition with a relatively small (and thus high-yielding, despite the new process) chip as part of a platform for users who are relatively performance-insensitive, but who will still appreciate the immediate benefits of reduced heat and increased battery life.

    I'm also a bit confused about your perspective on their GPU. AFAIK the most modern low-profile low-power GPU out there is Nvidia's 1650 - and in terms of performance-per-watt, this iGPU thrashes it, with absolute performance being not far behind. Perf/Watt appears to be Apple's primary concern (for a given degree of absolute performance), so I see it as a resounding (and surprising) success. It's down to AMD and Nvidia to respond now.
  • Kangal - Wednesday, November 25, 2020 - link

    @Spunjji
    Thanks for the read, sorry it's quite long.

    I mean, the Apple Silicon M1 as it is, it's very good for the new Macbook Air. I guess for the cheap/budget Mac Mini it is also decent. However, it's kind of out of place on the Pro. Perhaps they will launch more Macs in the next 6 months, something beefy for their larger MacBook Pro, and maybe something desktop-worthy in an iMac and Mac Pro. I completely agree with your points. Apple now has the best chipset in the world, their large cores are highly competitive, and their GPU tech is the most efficient. In fact, their medium-cores are the best, they're an Out-of-order processor which sucks slightly less power than a Cortex A53 (or slightly more than A55 ?), but they're slightly faster than a Cortex A73 (or slightly slower than A72 ?). Either way, that's stupidly impressive.

    But as it stands, Apple has done the works but on the last yard, pulled its punches.... and I state that since they're saving money on the SoC by sourcing it themselves, and not paying those exorbitant Intel prices. So there's definitely (money and silicon) budget there to go more ambitious. I just wanted to see more competitive/better product segmentation, eg:

    Apple M10, ~10W, 8 large cores, 8cu GPU... for 11in laptop, ultra thin, fanless
    Apple M13, ~15W, 8 large cores, 16cu GPU... for 14in laptop, thin, active cooled
    Apple M15, ~25W, 8 large cores, 32cu GPU... for 17in laptop, thick, active cooled
    Apple M17, ~45W, 16 large cores, 32cu GPU... for 29in iMac, thick, AC power
    Apple M19, ~95W, 16 large cores, 64cu GPU.... for Mac Pro, desktop, strong cooling

    ...and after 1.5 years, they can move unto the next refined architecture/node (ex Apple M20, M23, M25, M27, M29 etc etc).
  • Sherlock - Monday, November 30, 2020 - link

    I believe the iPad Pros (if not all iPads) will move to the M1 chip and run the MacOS with the ability to run iPadOS/iOS Apps. With the detachable keyboards and Apple Pen support - they will become the ultimate Portable workstation. Knowing Apple's penchant for a limited product line - they may even drop the Apple Macbook Air.
  • BushLin - Saturday, November 21, 2020 - link

    "To be honest, a lot of comparisons of the Apple Silicon M1 are vague, misrepresentative or blatantly off..."
    <proceeds to list unattributed benchmark results with incorrect power labels>
  • Spunjji - Thursday, November 19, 2020 - link

    @vlad24 - I'm aware of how process node can affect voltage requirements and power draw, and the various TDP differences.

    I wasn't arguing that TSMC 5nm wouldn't help AMD's power efficiency, I was arguing with the nonsensical statement that it's the *sole reason* for Apple's good showing in that area. lilmoe's salty opinions aren't supported by the facts.

    You're correct that AMD at 5nm would probably regain an advantage over M1 in mobile devices, but that will be in a year's time, and Apple aren't standing still. It's likely we'll be seeing them leapfrog each other. In the meantime, it'll be interesting to see how competitive Cezanne ends up being with M1 and/or whatever Apple's next-largest chip will end up being.
  • vlad42 - Saturday, November 21, 2020 - link

    But if shrinking Zen 3 to the same 5nm process would make its mobile variant more energy efficient, then that would imply that Zen 3 is a more efficient architecture. It just happens that the architecture is held back in this specific comparison by the manufacturing process.

    We do not know if AMD will bother to port Zen 3 to 5nm, they could skip straight to Zen 4. Who knows what process Apple will be using by the time AMD moves to 5nm. 3nm could still be too expensive for chips larger than those used for phones.

    Granted if the energy efficiency of Zen 3 equals M1 when both are on 5nm, then the M1's efficiency cannot be solely due to 5nm unless that were also true for Zen 3.
  • mdriftmeyer - Saturday, November 21, 2020 - link

    Zen 4 is scheduled to have samples Q1 2021 on 5nm advanced node TSMC. The fact you don't know this tells me you don't follow AMD.
  • Spunjji - Monday, November 23, 2020 - link

    @mdriftmeyer - You'd be wrong in both assuming that I don't know and that I don't "follow AMD". Samples in Q1 2021 does not equal released product in Q1 2021, does it? I'm talking about product availability, and you're moving the goalposts for reasons that aren't clear to me.
  • magreen - Tuesday, November 24, 2020 - link

    @Spunjji - Thanks for your insightful responses, as usual. Sometimes I'm tempted to just hit Ctrl-F to find your comments and ignore the rest.
  • haghands - Tuesday, November 17, 2020 - link

    Cope

Log in

Don't have an account? Sign up now