GPU Performance & Power

On the GPU side of things, testing the QRD865 is a bit complicated as we simply didn’t have enough time to run the device through our usual test methodology where we stress both peak as well as sustained performance of the chip. Thus, the results we’re able to present today solely address the peak performance characteristics of the new Adreno 650 GPU.

Disclaimer On Power: As with the CPU results, the GPU power measurements on the QRD865 are not as high confidence as on a commercial device, and the preliminary power and efficiency figures posted below might differ in final devices.

3DMark Sling Shot 3.1 Extreme Unlimited - Physics

The 3DMark Physics tests is a CPU-bound benchmark within a GPU power constrained scenario. The QRD865 here oddly enough doesn’t showcase major improvements compared to its predecessor, in some cases actually being slightly slower than the Pixel 4 XL and also falling behind the Kirin 990 powered Mate 30 Pro even though the new Snapdragon has a microarchitectural advantage. It seems the A77 does very little in terms of improving the bottlenecks of this test.

3DMark Sling Shot 3.1 Extreme Unlimited - Graphics

In the 3DMark Graphics test, the QRD865 results are more in line with what we expect of the GPU. Depending on which S855 you compare to, we’re seeing 15-22% improvements in the peak performance.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen

In the GFXBench Aztec High benchmark, the improvement over the Snapdragon 855 is roughly 26%. There’s one apparent issue here when looking at the chart rankings; although there’s an improvement in the peak performance, the end result is that the QRD865 still isn’t able to reach the sustained performance of Apple’s latest A13 phones.

GFXBench Aztec High Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 26.14 3.83 6.82 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 34.00 6.21 5.47 fps/W
iPhone XS (A12) Warm N7 19.32 3.81 5.07 fps/W
iPhone XS (A12) Cold / Peak N7 26.59 5.56 4.78 fps/W
QRD865 (Snapdragon 865) N7P 20.38 4.58 4.44 fps/W
Mate 30 Pro (Kirin 990 4G) N7 16.50 3.96 4.16 fps/W
Galaxy 10+ (Snapdragon 855) N7 16.17 4.69 3.44 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 15.59 4.80 3.24 fps/W

Looking at the estimated power draw of the phone, it indeed does look like Qualcomm has been able to sustain the same power levels as the S855, but the improvements in performance and efficiency here aren’t enough to catch up to either the A12 or A13, with Apple being both ahead in terms of performance, power and efficiency.

GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

GFXBench Aztec Normal Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 73.27 4.07 18.00 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 91.62 6.08 15.06 fps/W
iPhone XS (A12) Warm N7 55.70 3.88 14.35 fps/W
iPhone XS (A12) Cold / Peak N7 76.00 5.59 13.59 fps/W
QRD865 (Snapdragon 865) N7P 53.65 4.65 11.53 fps/W
Mate 30 Pro (Kirin 990 4G) N7 41.68 4.01 10.39 fps/W
Galaxy 10+ (Snapdragon 855) N7 40.63 4.14 9.81 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 40.18 4.62 8.69 fps/W

We’re seeing a similar scenario in the Normal variant of the Aztec test. Although the performance improvements here do match the promised figures, it’s not enough to catch up to Apple’s two latest SoC generations.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 100.58 4.21 23.89 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 123.54 6.04 20.45 fps/W
iPhone XS (A12) Warm N7 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak N7 103.83 5.98 17.36 fps/W
QRD865 (Snapdragon 865) N7P 89.38 5.17 17.28 fps/W
Mate 30 Pro (Kirin 990 4G) N7 75.69 5.04 15.01 fps/W
Galaxy 10+ (Snapdragon 855) N7 70.67 4.88 14.46 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Mate 20 Pro (Kirin 980) N7 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W

Even on the more traditional tests such as Manhattan 3.1, although again the Adreno 650 is able to showcase good improvements this generation, it seems that Qualcomm didn’t aim quite high enough.

GFXBench T-Rex 2.7 Off-screen

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 289.03 4.78 60.46 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 328.90 5.93 55.46 fps/W
iPhone XS (A12) Warm N7 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak N7 271.86 6.10 44.56 fps/W
QRD865 (Snapdragon 865) N7P 206.07 4.70 43.84 fps/W
Galaxy 10+ (Snapdragon 855) N7 167.16 4.10 40.70 fps/W
Mate 30 Pro  (Kirin 990 4G) N7 152.27 4.34 35.08 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Mate 20 Pro (Kirin 980) N7 135.75 4.64 29.25 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W

Lastly, the T-Rex benchmark which is the least compute heavy workload tested here, and mostly is bottlenecked by texture and fillrate throughput, sees a 23% increase for the Snapdragon 865.

Overall GPU Conclusion – Good Improvements – Competitively Not Enough

Overall, we were able to verify the Snapdragon 865’s performance improvements and Qualcomm’s 25% claims seem to be largely accurate. The issue is that this doesn’t seem to be enough to keep up with the large improvements that Apple has been able to showcase over the last two generations.

During the chipset’s launch, Qualcomm was eager to mention that their product is able to showcase better long-term sustained performance than a competitor which “throttles within minutes”. While we don’t have confirmation as to whom exactly they were referring to, the data and narrative here only matches Apple’s device behaviour. Whilst we weren’t able to test the sustained performance of the QRD865 today, it unfortunately doesn’t really matter for Qualcomm as the Snapdragon 865 and Adreno 650’s peak performance falls in at a lower level than Apple’s A13 sustained performance.

Apple isn’t the only one Qualcomm has to worry about; the 25% performance increases this generation are within reach of Arm’s Mali-G77. In theory, Samsung’s Exynos 990 should be able to catch up with the Snapdragon 865. Qualcomm had been regarded as the mobile GPU leader over the last few years, but it’s clear that development has slowed down quite a lot recently, and the Adreno family has lost its crown.

Machine Learning Inference Performance Final Thoughts
Comments Locked

178 Comments

View All Comments

  • quadrivial - Monday, December 16, 2019 - link

    I think there could be some possibility of AMD striking that deal with some stipulations. They have the semi-custom experience to make it happen and they don't have much to lose in mobile. AMD already included a small arm chip on their processors. They already use AMD GPUs too. A multi-chip package with be great here.

    I've given some thought to the idea of 8 Zen cores, 8 core ARM complex, 24CU Navi, 32GB HBM2, and a semi-custom IO die to the it together. You could bin all of these out for lower-spec'd devices. The size of this complex would be much smaller than a normal dedicated GPU, CPU, and RAM while using a bit less power. Most lower end devices would probably only need 2 x86 cores and 8-11CU with 8GB of RAM.
  • zanon - Wednesday, December 18, 2019 - link

    >"I wonder if it's in the cards for Apple to ever include both an Intel processor as well as a full fledged mobile chip in the future, working in the same way as integrated/discrete graphics - the system would primarily run on the A13x, with the Intel chip firing up for Intel-binary apps as needed."

    Doubt it, if only because x64 is already coming out of patent protection, and with each passing year newer feature revisions will have the same thing happen. By 2025 or 2026 or so, Apple (or anyone else) will just flat out be able to implement x86-64 all the way up to Core 2 at least however they like (be it hardware, software, or some combo with code morphing or the like). That would probably be enough to cover most BC, sure stuff wouldn't run as fast but it would run. And there'd be a lot of power efficiency to be gained as well.
  • Midwayman - Monday, December 16, 2019 - link

    OSX on arm seems a given soon. That would allow them to really blur the line between their ipad pro and the lower end laptops. Even if they are still technically different OSes it would make getting real pro apps onto the ipad pro a ton easier. MS tried this of course but didn't have the clout or tablet market to really make it happen. Apple is in a position to force the issue and has switch architectures in the past.
  • levizx - Tuesday, December 17, 2019 - link

    Nope, Apple still support AArch32, and Apple 64bit is only ahead of ARM by 1 year max, actual S810 silicon by Qualcomm was only 15 months later than A7, you can't possibly say Apple started earlier AND took 2-3 years LESS than ARM's partners to design silicon. That would mean Apple has to beat A57 by at least 3 year. Reality says otherwise.
  • quadrivial - Tuesday, December 17, 2019 - link

    Apple dropped aarch32 starting with A11.

    ARM announced their 64-bit ISA on 27 October 2011. The A7 launched 19 September 2013 -- less than two years later. Anandtech's first review of a finished A53 and A57 product was 10 Feb 2015 -- almost 3.5 years later and their product was obviously rushed with new revision coming out after and A57 being entirely replaced and forgotten.

    Qualcomm and others were shocked because they only had 2 years to do their designs and they weren't anywhere near complete. A ground-up new design in 23 months with a band new ISA isn't possible under and circumstances.

    https://www.google.com/amp/s/appleinsider.com/arti...
  • ksec - Monday, December 16, 2019 - link

    Apple SoC uses more Die Space for CPU Core, it is as simple as that, so they are not a fair comparison. For roughly the same die size, Qualcomm has to fit in the Modem, while Apple has the modem external.
  • rpg1966 - Monday, December 16, 2019 - link

    I'm not sure I understand the "fair" bit? The other chip makers are free to design a larger-core variant if they so choose. And, the 865 has the modem external, just like the Apple chips. Also, generally speaking, the SoC + external modem approach should require more power, yet Apple seems to do very well on those benchmarks.

    Maybe it's more as per another reply, i.e. Apple just optimises everything, one example being throwing out a32.
  • generalako - Monday, December 16, 2019 - link

    That's not an argument -- the modem costs money for both parties either way at the end of the day. Also, Cortex Cores are pretty great, with still bigger year-on-year improvements than Apple (which seems to have stagnated), so it is closing the gap, albeit slowly. The big complaint however is in things like Qualcomm's complacency in GPU, or in ARM doing shit-all to give us a new efficiency core architecture, after 3 years.

    Apple has surpassed them hugely here, to the point that their efficiency cores perform more than 2x as much with half the power. Now, if you want bring price into here, think about how much that costs OEMs. It costs them by forcing them to use mid-range SoCs that use expensive performance cores, when they could make due with only efficiency cores that performed better. It costs them, as well as flagship phones, in a lot of power efficiency, forcing them to do hardware compromises, or spend more on larger batteries, to compete.
  • generalako - Monday, December 16, 2019 - link

    ARM has been catching up, though. The IPC increases since A11 have been pretty meagre, whereas A76 was a pretty sizeable jump (cutting a lot of the gap), and A77 is doing a 25% IPC jump, whereas the A13 did what, half that? Of course Apple still has a huge foothold, but the gap has been getting smaller...

    ARM's issue right now, though, is in efficiency cores. The fact that their Cambrdige team hasn't developed anything for 3 straight years now (going into the 4th), whereas Apple's yearly architecture improvement has given them efficiency cores that is monumentally better in both performance and efficiency, is getting embarrassing at this points. It's hurting Android phones a lot and getting kind of ridiculous at this point. No less frustrating that none of the SoC actors are bothering to make any dedicated architectures themselves to make up for it. Qualcomm is complacent in even their GPUs, which have been on the same architecture for 3 straight years and has in this time completely lost its crown to Apple--even ARM's Mali has caught up!
  • FunBunny2 - Tuesday, December 17, 2019 - link

    "How is Apple so far ahead in some/many respects, given that Arm is dedicated to designing these microarchitectures?"

    based on what I've read in public reporting, Apple appears to mostly thrown hardware at the ISA. Apple has the full-boat ISA license, so they can take the abstract spec and lay it out on the silicon anyway they want. but what it appears is that all that godzilla transistor budget has gone to caches(s) and such, rather than a smarter ALU, fur instance. may haps AT has done an analysis just exactly what Apple did to the spec or RD to make their versions? did they actually 'innovate' the (micro-?) architecture, or did they, in fact, just bulk up the various parts with more transistors?

Log in

Don't have an account? Sign up now