Final Thoughts

Today’s preview focused solely on the performance metrics of the new chipset, which only cover a very small subset of the new features that the chip will be bringing to devices next year. A lot of the talking-points of the new SoC such as 5G connectivity, or the new camera and media capabilities, are aspects for which we’ll have to wait on commercial devices.

For what we’ve been able to test today, the Snapdragon 865 seems very solid. The new Cortex-A77 CPU does bring larger IPC improvements to the table, and thanks to the Snapdragon 865’s improved memory subsystem, the chip has been able to showcase healthy performance increases. I did find it odd that the web benchmarks didn’t quite perform as well as I had expected – I don’t know if the new microarchitecture just doesn’t improve these workloads as much, or if it might have been a software issue on the QRD865 phone; we’ll have to wait for commercial devices to have a clearer picture of the situation. System performance of the new chip certainly shouldn’t be disappointing, and even on a conservative baseline configuration, 2020 flagships should see an increase in responsiveness compared to the Snapdragon 855.

AI performance of the new chip is also improved – although our limited benchmark suite here isn’t able to fully expose the hardware improvements that the S865 brings with it. It’s likely that first-party camera applications will be the first real workloads that will be able to showcase the new capabilities of the chip.

On the GPU side, the improvements are also quite solid, but I just have a feeling that the narrative here isn’t quite the same anymore for Qualcomm, as Apple’s the elephant in the room now here as well. During the launch of the chipset the company was quite eager to promote that its sustained performance is better than the competition. While we weren’t able to test this aspect of the Snapdragon 865 on the QRD865 due to time constraints, the simple fact is that the chip’s peak performance remains inferior to Apple’s sustained performance, with the fruit company essentially dominating an area where previously Qualcomm was king. In this regard, I hope Qualcomm is able to catch up in the future, as the differences here are seemingly getting bigger each year.

Overall, the Snapdragon 865 seems like a very well-balanced chip and I have no doubt it’ll serve as a very competitive foundation for 2020 flagships. Qualcomm’s strengths lie in the fact that they’re able to deliver a complete solution with 5G connectivity – we do however hope that in the future the company will be able to offer more solid performance upgrades; the competition out there is getting tough.

GPU Performance & Power
Comments Locked

178 Comments

View All Comments

  • UglyFrank - Monday, December 16, 2019 - link

    I imagine the Tab S7 will have this.
    Meanwhile the iPad Pro 2020 will most likely have more than double the GPU power.
  • Kishoreshack - Monday, December 16, 2019 - link

    That's not how it works bro
  • UglyFrank - Monday, December 16, 2019 - link

    It is. The A12X has more than double the S855's GPU performance and we can expect ~ 20% increase in GPU performance (A12X to A13X) as the A12 to A13 had a similar increase.
  • generalako - Monday, December 16, 2019 - link

    Ok, but then again the SD875 (or whatever it will be called) is expected to be on a new architecture after 3 generation, which generally means 50%+ jump just there. With the transition over to 5nm, you can expect even more performance from that. That would, after all, be the most fair comparison to the A14 (or A14X) on 5nm later this year, due to process node comparisons. Same with CPUs (don't forget, the A77 in the SD865 was released in the summer before by ARM, and even presented in the SD865 in December).
  • close - Tuesday, December 17, 2019 - link

    Over the past few years Apple has been doing a consistently better job than Qualcomm regardless of process node. Probably they can afford to since they are in full control of the whole technology stack, including the software which means they can squeeze additional performance and efficiency like that. But this doesn't change the fact that year after year A-chips are better than their counterparts.
  • tuxRoller - Wednesday, December 18, 2019 - link

    I'm not sure that apple is much, if at all, more optimized than the Android bsps. If you're aware of proof to the contrary I'd be interested in reading it.
  • michael2k - Wednesday, December 18, 2019 - link

    It doesn’t mean optimized the way you envision it. It means more tailored to the design, since Apple has a fixed number of systems it has to support. There are three ways to see it: how many years does Apple push iOS updates? That is a function of performance as well, as as the OS.

    Another way to see it is knowing that Apple ships iPhones with much less RAM, meaning their OS and apps have to be designed to use less RAM too.

    Likewise their iPhone usually ships with smaller batteries; by designing the OS, SoC, and RAM synergistically they can use a smaller battery too. RAM happens to use energy even when idle, so less RAM does translate to lower energy usage.
  • michael2k - Tuesday, December 17, 2019 - link

    Yeah, but anything Qualcomm does to boost performance, Apple will be doing too.

    The 865 is going to compete with the A14 in 2020, and the 875 will compete with the A15 in 2021. So if we expect the A14 to boost perf by 15% and the A14X to boost perf by 40%, and the A15 to boost perf again by 10% and A15X to boost perf again by 25%, you'll see:
    855 = 1.00
    865 = 1.25
    875 = 1.50

    A13 = 1
    A13X = 1.4
    A14 = 1.15
    A14X = 1.96
    A15 = 1.26
    A15X = 2.45

    Technically Qualcomm has more room to improve when you compare transistor budgets: the A13 is approximately 8.5b transistors, the A12 7b transistors.

    In comparison, the 855 only had 6b transistors, per Qualcomm itself:
    https://www.qualcomm.com/media/documents/files/sna...
  • id4andrei - Tuesday, December 17, 2019 - link

    The 865 competes with A13 not with the future A14. Apple sets the cadence in the SoC space and have done so since breaking rank with sheer performance and transition to a 64bit arch.
  • generalako - Tuesday, December 17, 2019 - link

    This is just misrepresentative. The past two generations ARM's architecture has been closing the gap to Apple. It closed the gap by around 30% in IPC with A76, and doing so by around 15% in IPC with A77 (A77 had 27% IPC gain vs. A13's 12% IPC gain). The gap has been getting smaller, and hopefully it will continue. But the fact is still that it's closing for the performance cores.

    Also, you're comparisons are way off. The SD855 was comparable to the A12, just as the SD865 is to the A13, and so on and so forth. This with process node and the actual release date of the Cortex Core in mind.

Log in

Don't have an account? Sign up now