GPU Performance & Power

On the GPU side of things, testing the QRD865 is a bit complicated as we simply didn’t have enough time to run the device through our usual test methodology where we stress both peak as well as sustained performance of the chip. Thus, the results we’re able to present today solely address the peak performance characteristics of the new Adreno 650 GPU.

Disclaimer On Power: As with the CPU results, the GPU power measurements on the QRD865 are not as high confidence as on a commercial device, and the preliminary power and efficiency figures posted below might differ in final devices.

3DMark Sling Shot 3.1 Extreme Unlimited - Physics

The 3DMark Physics tests is a CPU-bound benchmark within a GPU power constrained scenario. The QRD865 here oddly enough doesn’t showcase major improvements compared to its predecessor, in some cases actually being slightly slower than the Pixel 4 XL and also falling behind the Kirin 990 powered Mate 30 Pro even though the new Snapdragon has a microarchitectural advantage. It seems the A77 does very little in terms of improving the bottlenecks of this test.

3DMark Sling Shot 3.1 Extreme Unlimited - Graphics

In the 3DMark Graphics test, the QRD865 results are more in line with what we expect of the GPU. Depending on which S855 you compare to, we’re seeing 15-22% improvements in the peak performance.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen

In the GFXBench Aztec High benchmark, the improvement over the Snapdragon 855 is roughly 26%. There’s one apparent issue here when looking at the chart rankings; although there’s an improvement in the peak performance, the end result is that the QRD865 still isn’t able to reach the sustained performance of Apple’s latest A13 phones.

GFXBench Aztec High Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 26.14 3.83 6.82 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 34.00 6.21 5.47 fps/W
iPhone XS (A12) Warm N7 19.32 3.81 5.07 fps/W
iPhone XS (A12) Cold / Peak N7 26.59 5.56 4.78 fps/W
QRD865 (Snapdragon 865) N7P 20.38 4.58 4.44 fps/W
Mate 30 Pro (Kirin 990 4G) N7 16.50 3.96 4.16 fps/W
Galaxy 10+ (Snapdragon 855) N7 16.17 4.69 3.44 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 15.59 4.80 3.24 fps/W

Looking at the estimated power draw of the phone, it indeed does look like Qualcomm has been able to sustain the same power levels as the S855, but the improvements in performance and efficiency here aren’t enough to catch up to either the A12 or A13, with Apple being both ahead in terms of performance, power and efficiency.

GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

GFXBench Aztec Normal Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 73.27 4.07 18.00 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 91.62 6.08 15.06 fps/W
iPhone XS (A12) Warm N7 55.70 3.88 14.35 fps/W
iPhone XS (A12) Cold / Peak N7 76.00 5.59 13.59 fps/W
QRD865 (Snapdragon 865) N7P 53.65 4.65 11.53 fps/W
Mate 30 Pro (Kirin 990 4G) N7 41.68 4.01 10.39 fps/W
Galaxy 10+ (Snapdragon 855) N7 40.63 4.14 9.81 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 40.18 4.62 8.69 fps/W

We’re seeing a similar scenario in the Normal variant of the Aztec test. Although the performance improvements here do match the promised figures, it’s not enough to catch up to Apple’s two latest SoC generations.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 100.58 4.21 23.89 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 123.54 6.04 20.45 fps/W
iPhone XS (A12) Warm N7 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak N7 103.83 5.98 17.36 fps/W
QRD865 (Snapdragon 865) N7P 89.38 5.17 17.28 fps/W
Mate 30 Pro (Kirin 990 4G) N7 75.69 5.04 15.01 fps/W
Galaxy 10+ (Snapdragon 855) N7 70.67 4.88 14.46 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Mate 20 Pro (Kirin 980) N7 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W

Even on the more traditional tests such as Manhattan 3.1, although again the Adreno 650 is able to showcase good improvements this generation, it seems that Qualcomm didn’t aim quite high enough.

GFXBench T-Rex 2.7 Off-screen

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 289.03 4.78 60.46 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 328.90 5.93 55.46 fps/W
iPhone XS (A12) Warm N7 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak N7 271.86 6.10 44.56 fps/W
QRD865 (Snapdragon 865) N7P 206.07 4.70 43.84 fps/W
Galaxy 10+ (Snapdragon 855) N7 167.16 4.10 40.70 fps/W
Mate 30 Pro  (Kirin 990 4G) N7 152.27 4.34 35.08 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Mate 20 Pro (Kirin 980) N7 135.75 4.64 29.25 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W

Lastly, the T-Rex benchmark which is the least compute heavy workload tested here, and mostly is bottlenecked by texture and fillrate throughput, sees a 23% increase for the Snapdragon 865.

Overall GPU Conclusion – Good Improvements – Competitively Not Enough

Overall, we were able to verify the Snapdragon 865’s performance improvements and Qualcomm’s 25% claims seem to be largely accurate. The issue is that this doesn’t seem to be enough to keep up with the large improvements that Apple has been able to showcase over the last two generations.

During the chipset’s launch, Qualcomm was eager to mention that their product is able to showcase better long-term sustained performance than a competitor which “throttles within minutes”. While we don’t have confirmation as to whom exactly they were referring to, the data and narrative here only matches Apple’s device behaviour. Whilst we weren’t able to test the sustained performance of the QRD865 today, it unfortunately doesn’t really matter for Qualcomm as the Snapdragon 865 and Adreno 650’s peak performance falls in at a lower level than Apple’s A13 sustained performance.

Apple isn’t the only one Qualcomm has to worry about; the 25% performance increases this generation are within reach of Arm’s Mali-G77. In theory, Samsung’s Exynos 990 should be able to catch up with the Snapdragon 865. Qualcomm had been regarded as the mobile GPU leader over the last few years, but it’s clear that development has slowed down quite a lot recently, and the Adreno family has lost its crown.

Machine Learning Inference Performance Final Thoughts
Comments Locked

178 Comments

View All Comments

  • joms_us - Tuesday, December 17, 2019 - link

    Ah poorman's attempt to hide the truth. I feel sorry for those buying a phone (even replacing a desktop) because they see it flying with colors in SPEC.
  • Andrei Frumusanu - Tuesday, December 17, 2019 - link

    You're just a blabbering idiot. You keep pulling things out your ass, nobody ever said A9 is faster than Ryzen or Skylake, I dare you find a quote or data that says that. The A13 was the first to *match* them.

    The test you quote isn't ST like the SPEC results, and it's not even a full CPU test as it has API components.
  • joms_us - Tuesday, December 17, 2019 - link

    Ahh the irony... Let's see who is the blabbering !d!ot here.

    You reminded us on who the IPC gorila is...

    https://twitter.com/andreif7/status/11569659188089...

    There it shows A13 and even A9 stomping the latest and greatest Ryzen and Skylake processors

    But then when you compare the A13 versus the Android SoC in various apps and websites, it is the complete opposite.

    I respect you because you have an excellent knowledge in what you do but it comes down to the toilet drain once your critical thinking is subpar and you are shadowed with your ego that you think yours and only yours speak the truth. I would not hesitate to hire you as my design engineer really but you have to back your claims with facts. When you state one is the fastest (especially by huge margin), it has to reflect in any test that you throw at it.

    I would rest my case if you can convince Lisa or Bob that their processors are mediocre compared to Apple's latest SoC LOL.
  • Andrei Frumusanu - Tuesday, December 17, 2019 - link

    That tweet is about IPC of the microarchitectures, not absolute performance.

    You literally have absolutely not a single whim of understanding of what's going on here and keep making a complete utter fool of yourself repeating lies, all you see is a bar graph being bigger than the other and suddenly that's the your whole basis on the truth of the world.

    The actual engineers and architects in the industry very well know where they lie in relation to what's Apple's doing; I don't need to convince anybody.
  • joms_us - Tuesday, December 17, 2019 - link

    No, you just told the whole world, that the fastest chip on the planet is the Apple SoC. A chip with great IPC will give great performance result, right? Your graph is telling us, a 1Ghz A12x core is equivalent to a 2Ghz Ryzen core which is utter BS. When AMD or Intel announce that their next processor has 20% IPC improvement, it does show in any tool/benchmark or app you throw at it not the opposite.

    Your tests methodology/tools are completely flawed and outdated as they don't translate to real world results. They are great though if you are comparing two similar platforms.
  • Andrei Frumusanu - Tuesday, December 17, 2019 - link

    > No, you just told the whole world, that the fastest chip on the planet is the Apple SoC

    I did not. High IPC doesn't just mean it's the fastest overall. AMD and Intel still have a slight lead in over performance.

    > A chip with great IPC will give great performance result, right?

    As long as the clock-rate also is high enough, yes.

    > Your graph is telling us, a 1Ghz A12x core is equivalent to a 2Ghz Ryzen core

    That's exactly correct. Apple current has the highest IPC microarchitecture in the industry by a large margin.

    > which is utter BS.

    The difference between you and me is that I actually have a plethora of data to back this up, actual instruction counter data from the performance counters, actual tests tests that show that Apple's µarch is in fact 50% wider than anything else out there.

    You are doing absolutely nothing than spewing rubbish comments with absolutely zero understanding of the matter. You have absolutely nothing to back up your claims about flawed and outdated methodologies, while I have the actual companies who design these chips agreeing with the data I present.
  • arsjum - Wednesday, December 18, 2019 - link

    Andrei,

    As a member of Anandtech staff, you should be better than this. This is not an XDA forum.

    Come on.
  • LordConrad - Tuesday, December 17, 2019 - link

    Now if Samsung could just increase the anemic L2 cache. I want 1MB per A7x core and 512KB per A5x core.
  • yankeeDDL - Tuesday, December 17, 2019 - link

    It is truly disappointing that Android HW needs to run on SoC with the performance of the iPhone 3-4 generations older.
    I really don't understand with all the demand there is, why nobody comes up with something at least within the range of Apple's SoC.
  • Wilco1 - Tuesday, December 17, 2019 - link

    You mean 2 generations behind at most on SPEC. And while interesting technically, it remains debatable how much that actually matters in actual phone use (where having fast SSD, download speeds and a lot of memory can help more). As well as having ~20% better power efficiency of course.

    It would be relatively easy to quadruple L2 to 1MB, L3 to 8MB and system cache to 16MB and get ~20% performance gain on SPEC. The area would be much larger and hence the cost of the SoC which would add to the cost of phones. QC's competitors would be happy to increase their market share with far cheaper SoCs which are equally fast in real-world usage.

Log in

Don't have an account? Sign up now