Intel Core i9-9990XE Conclusion

Intel never really announced the Core i9-9990XE into the market. We broke the story this year at CES in January after confirming from several sources in that initial auction said that it was taking place – a 14-core 5.0 GHz CPU and an unknown quantity would be available for select system integrators and OEM partners to bid on. There is no warranty from Intel, so these integrators were taking a risk, and could ultimately bid too high for a chip that might not sell.

In the end, that initial auction fell to (at least) three companies, of which two ended up with the CPUs. We very quickly found out that CaseKing snapped up most of them, and the company eventually ended up putting them for direct sale (with 1 year warranty) on their connected websites for €2999 (now €2849) as well as offering several of their high profile water cooled extreme overclocked systems with the chip inside. We also saw Puget Systems with at least one, and another companies was ICC, an Intel partner that focuses on a number of markets including the financial market. It was ICC who built a 1U system for this chip and sampled the system for us to review.

The system was provided with custom proprietary liquid cooling, which we’re not able to show you. The thing is a beast, however, and can appropriately cool up to 400W of CPU in a 1.75-inch form factor. It’s also loud, registering 78 decibels whether the system is at idle or running a full workload. Given that it is a 1U server, this would suggest that a datacenter is the best place for it. I have no doubt that it could be transferred into a tower, although much like the 28-core Xeon W-3175X we tested in January, it requires a substantial cooling setup to be tamed.

In performance, the tweaked system from ICC was built for low latency financial trading. It was only paired with 32 GB of DDR4, but running at DDR4-3600 with tuned subtimings. We added in our standard testing SSD and GPU, although due to the complexity of the system build we weren’t able to run games on this thing. But for raw ST performance, the Core i9-9990XE puts all the other high-end desktop chips to shame – as it should do. Everything from Intel on a Core chip gets obliterated, and against the Xeon W-3175X which has 28-cores, the Xeon does go ahead just on the multithreaded stuff but this Core i9-9990XE kills it when frequency is the limiting factor. This shows up in our compile test, where the right balance of cores and frequency are needed - the Core i9-9990XE set a new world record in our benchmark. There are some caveats - the mesh frequency does seem to be a little bit of a hold back in some tests, or frequency going in and out of turbo modes can cause additional delays in tests.

Against AMD counterparts, that 5.0 GHz frequency carves through anything like butter. Where AMD has to play is on its 32-core Threadripper CPUs, and even then it’s a tradeoff – 14 cores at 5.0 GHz against 32 cores at ~3.4 GHz means that the 2990WX has a lead only it’s a raw compute problem, but put in any memory limited scenario, or add in AVX2/AVX512, and the Core i9-9990XE is going to win.

We obviously haven’t talked price. The W-3175X is a similar $3000 to the i9-9990XE, but has ECC support and six memory channels, but doesn’t have that single thread frequency. The 2990WX is a NUMA design that works well in focused applications rather than the i9-9990XE which works well in almost every scenario, but the 2990WX is 30-40% cheaper.

Comparing the i9-9990XE
Intel   AMD
Xeon
W-3175X
Core i9
9990XE
Core i9
9900KS
AnandTech Ryzen
7 3950X
TR 2
2990WX
EPYC
7542
28 14 8 Cores 16 32 32
56 28 16 Threads 32 64 64
3.1 4.0 4.0 Base 3.5 3.0 2.9
  5.0 5.0 All-Core      
4.5 5.0 5.0 Turbo 4.7 4.2 3.4
255 W 255 W 127 W? TDP 105 W 250 W 225W
6 x 2666 4 x 2666 2 x 2666 DDR4 2 x 3200 4 x 2933 8 x 3200
48 44 16 PCIe 24 64 128
$2999 $auction $513 MSRP $749 $1799 $3400

Then around the corner we have Intel’s 8-core 5.0 GHz processor, the Core i9-9900KS. This is a consumer level processor, with only two memory channels and 16 PCIe 3.0 lanes, but is set to be $513 when launched in a couple of days (October 30th). Users interested in an all-core 5.0 GHz processor out of the box (i.e., not overclocked) are likely to find that the 9900KS acts as a good starter position, which might be able to be scaled with the 9990XE when things like memory bandwidth start becoming an issue.

On the topic of sustainability, no-one is going to be able to deploy the Core i9-9990XE en-mass: Intel only has a few chips that meet the specifications, and these are auctioned to system integrators. So unless a customer wants a specific number, they will have to work with an system integrator with a set budget for that auction in mind, and even then, there’s no guarantee that Intel will have that many chips available (or if someone will outbid you). There’s also no-warranty on the parts from the perspective of the system integrator, so that adds additional cost. Companies looking at one of these systems might have to consider them as one-offs for their deployment, whereas by comparison, we expect there to be more Core i9-9900KS processors in the wild for companies to buy direct from retailers.

Ultimately, the Core i9-9990XE is a curio. It’s a hell of a curio, that’s for sure. It is like one of the house robots on Robot Wars (UK) or BattleBots (US): something completely outside the rules of normal sportsmanship and is big enough to beat you to a pulp, and it’s very rare that you would even own one, not at least before it owns you.

 

Power Consumption, Frequencies, and Thermals
POST A COMMENT

145 Comments

View All Comments

  • Sivar - Monday, October 28, 2019 - link

    Why such an angry statement?
    14 is a very respectable number of cores. 14 at 5GHz is a world exclusive.
    I wouldn't even call this a product -- more of a hand-picked specialty part auction, which is perfectly reasonable (if uncommon) for any manufacturer to do. The fact that the parts sold indicates the demand is there. Why ignore the demand?
    Reply
  • Spunjji - Wednesday, October 30, 2019 - link

    The fact that they sold very few of them indicates that the demand is barely there. Reply
  • FunBunny2 - Monday, October 28, 2019 - link

    "Stories of companies spending 10s of millions to implement line-of-sight microwave transmitter towers to shave off 3 milliseconds from the latency time is a story I once heard. "

    There was reporting, mainstream source (Lewis: https://www.telegraph.co.uk/finance/newsbysector/b... that a broker(s) installed a fiber line from the Chicago office to an exchange in NJ.

    “It needed its burrow to be straight, maybe the most insistently straight path ever dug into the earth. It needed to connect a data centre on the South Side of Chicago to a stock exchange in northern New Jersey. Above all, apparently, it had to be secret," Mr Lewis said.
    Reply
  • bji - Monday, October 28, 2019 - link

    I call BS on that story. Why would you spend hundreds of millions (it must have cost at least that right?) to dig a straight 800+ mile tunnel between Chicago and NYC to get a 13 ms latency just so you could be destroyed by offices in NYC with 5 ms latency. Makes no sense. Your only choice is to move physically close to the source, if lowest latency is the winner then that's the only way to get it and be competitive.

    Authors happily embellish existing stories, misrepresent details, and just plain old make sh** up to sell books. And then news outlets happily garbage-in, garbage-out these stories to get hits. I'm pretty sure that's what happened with that "story".
    Reply
  • eek2121 - Monday, October 28, 2019 - link

    Companies have done it. Hell years ago I INTERVIEWED with a company that did it. It would blow your mind to find out what the financial folks will do to accelerate trading. A large portion of stock market trades are automated and driven by machine learning or predictive algorithms. How do I know, that position I interviewed for years ago (2003) was for a software developer for such an algorithm. I didn't get the job, because I didn't have the skills they were looking for at the time, but we did have a very interesting conversation about how their platform worked. It's fascinating how finance pushes everything forward. Reply
  • FunBunny2 - Monday, October 28, 2019 - link

    " It would blow your mind to find out what the financial folks will do to accelerate trading."
    yes, yes it would - here: https://www.marketplace.org/2019/10/07/fight-nyse-...
    Reply
  • bji - Monday, October 28, 2019 - link

    Yes, I believe that those companies probably often spend lots of money to buy competitive advantages. I am simply stating that they'd not be buying a competitive advantage here (since the real competition is based in NYC had has an insurmountable advantage - the laws of physics not letting signals travel between Chicago and Wall St. faster than 13 ms) so they wouldn't spend the money. They would spend money buying an actual competitive advantage, i.e. offices in NYC. Reply
  • mode_13h - Tuesday, October 29, 2019 - link

    > Why would you spend hundreds of millions (it must have cost at least that right?) to dig a straight 800+ mile tunnel between Chicago and NYC to get a 13 ms latency just so you could be destroyed by offices in NYC with 5 ms latency. Makes no sense. Your only choice is to move physically close to the source, if lowest latency is the winner then that's the only way to get it and be competitive.

    When something doesn't seem to make sense, maybe the error is in your understanding of the situation. Did you ever consider that there are financial markets outside of NYC, and that some people might be trading between markets, or using signals from one market to inform trades in others?
    Reply
  • Joel Busch - Tuesday, October 29, 2019 - link

    This one is easy to answer, because there are two stock exchanges in play. NYSE in New York and CHX in Chicago. If you can send information from one exchange to the other quicker than others then you have an opportunity for arbitrage.

    One of my professors is Ankit Singla, he works on c-speed networking, he cited this paper in class https://doi.org/10.1111/fire.12036

    They say for example:

    "Our analysis of the market data confirms that as of April 2010, the fastest communication route connecting the Chicago futures markets to the New Jersey equity markets was through fiber optic lines that allowed equity prices to respond within 7.25–7.95 ms of a price change in Chicago (Adler, 2012). In Au-gust of 2010, Spread Networks introduced a new fiber optic line that was shorter than the pre-existing routes and used lower latency equipment. This technology reduced Chicago–New Jersey latency to approximately 6.65 ms (Steiner, 2010; Adler,2012)."

    I don't have the time to read the whole paper right now, I'll just trust my professor here. If there is actually something wrong with their methodology then I think the world would like to hear it.
    Reply
  • rahvin - Monday, October 28, 2019 - link

    <<“It needed its burrow to be straight, maybe the most insistently straight path ever dug into the earth. It needed to connect a data centre on the South Side of Chicago to a stock exchange in northern New Jersey. Above all, apparently, it had to be secret," Mr Lewis said>>

    That's just a bunch of hogwash. You couldn't dig a straight line from Chicago to Jersey. It's just fancy sounding hogwash meant to convince those without the logic or background to see it for the hogwash it is. It's no more true than grimm's fairy tales.
    Reply

Log in

Don't have an account? Sign up now