System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For X570 we are running using Windows 10 64-bit with the 1903 update as per our Ryzen 3000 CPU review.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our test bed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)Power: OS Idle (w/ GTX 980)Power: Prime95 Blend (w/ GTX 980)

Looking at the power consumption numbers outputted from the ASUS Pro WS X570-Ace, it performs slightly worse than the MSI MEG X570 Ace model in both a long idle and idle power state. At full load, the tables are turned and the WS X570-Ace without RGB LEDs and unnecessary fluff managed to pull around 7-8 watts less at the wall than both the MSI MEG X570 models.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

In our POST time test, the ASUS Pro WS X570-Ace took a considerable amount of time to boot into Windows 10, but with controllers disabled, we managed to squeeze a much quicker time with a POST time of around 20 seconds. This is down to the Realtek RTL8117 Gigabit NIC requiring extra POST time to initialize, which in a professional environment, isn't too much of a burden to bear.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test DPC at default settings, out of the box, and the ASUS Pro WS X570-Ace performs very well in comparison to other models on test.

Board Features, Test Bed and Setup CPU Performance, Short Form
Comments Locked

110 Comments

View All Comments

  • AntonErtl - Tuesday, August 13, 2019 - link

    Thank you for the review.

    I find the >10% performance differences between the boards on some benchmarks surprising. Do you have any idea what is causing that? Are these benchmarks RAM-bandwidth limited, PCIe-limited, or do the slower boards drive the CPU with more voltage for the same clock rate, resulting in lower clock rate at the power limit? Or something else?
  • mblataric - Tuesday, August 13, 2019 - link

    Since this is workstation oriented, it would be nice to see how it works with Windows Server 2019 perhaps with Ryzen 3900X CPU which os more suited for this board.
    I am looking to build new virtualisation host and I would like to run WS 2019 as on OS, instead of Windows 10 (which just updates way to frequently to be used for my scenario).
  • quantumshadow44 - Tuesday, August 13, 2019 - link

    no default 10GbE = fail
  • zzing123 - Tuesday, August 13, 2019 - link

    +1
  • rrinker - Tuesday, August 13, 2019 - link

    Almost was thinking it's time to go back to Asus. No RGB! Hooray! But only 4 SATA ports? Well, so much for that... I'm looking to rebuild my server, M.2 for the OS drive, SATA for my storage drives, but I need way more than 4 ports. Intel NIC is a plus, wish BOTH of them were, instead of one Realtek.
  • CityZ - Tuesday, August 13, 2019 - link

    If you just need lots of SATA ports, but don't need lots of speed, you can use a SATA port multiplier. With 5x multipliers, you could hook up 20 SATA drives. This is good for archive storage drives.
  • rrinker - Wednesday, August 14, 2019 - link

    Needs to be fast enough to stream a couple of 1080 streams, tops. Unless there is an (unlikely) massive drop in large capacity SSD prices in the next couple of months, the bulk with be spinny disk, with a pair of SSDs for fast cache (the storage software I use supports this), and SSD for the OS drive (I'd use the M.2 slots on this MB). Many f the others I've looked at might have 8 SATA ports, but use one M.2 and you lose TWO SATA ports, use the second M.2 and you lose another SATA - so not much better off. Current server as a 2 port SATA PCI card. 10Gbe would be nice but I don;t have a 10Gbe switch, 2 of the same 1Gbe would be fine for basic teaming.
  • StoltHD - Friday, July 10, 2020 - link

    for approx 100USD you can buy a U.2 to M.2 NVME adapter, one U.2 cable and a NVME m.2 to 5 port SATA 3.0 adapter, giving you 5 ports (multiplier) on the U.2 port (Or you can buy a NVME m.2 to 4-port SATA adapter ...

    And if you can also add a NVME to SATA to the second M.2 slot ... thats 10 sata ports.
    I do not know yet of the motherboard sata chip support sata multiplier but if it does, you can add 4 multipliers to those to and get 20 sata ports on thos 4, if you set up a ZFS system correct, you will get near the speed of 4x sata-6 ... or you can use the second (2x pci-e 4) for cache ...

    The second M.2 runs a little over half speed on a pci-e v3 ssd, so it should be usefull for cache ...
  • WatcherCK - Tuesday, August 13, 2019 - link

    Can someone explain how the ECC support for Ryzon Pro works? Do you need a Pro cpu to be able to fully utilize ECC, from what I understand the Pro cpus are more for OEMs to be used in business grade machines...would a standard Ryzen CPU still work?

    With 3 PCIe slots you could do alot with it, NAS or virtualization and for less than what a threadripper system would cost... Just not available in NZ :(
  • zzing123 - Tuesday, August 13, 2019 - link

    No, all Ryzen (except maybe the really low-end/mobile ones) support ECC. The only thing you need to look for is the motherboard and DIMMs.

Log in

Don't have an account? Sign up now