Two Versions, Two Different Power Targets

Intel has promised that Ice Lake-U will be seen in a variety of form factors, targeting anywhere from 9W to 28W. This sort of range is not new for a U-series processor – we typically see overlap from something lower down (the Y-series, ~5W) or higher up (H-series, ~45W), however Ice Lake hasn’t currently been listed for H series power budgets - only Y and U. Having such a wide window, from 5-28W, allows Intel to be very wide with binning the chips as they come of the production line, which is a very valid tactic for promoting as much yield as possible with minimal waste.

Technically there will be two different Ice Lake BGA mobile packages – one aimed at low power (7-12W) for the Y series, and another for higher power designs (15-28W) in the U series.

At this point Intel has not stated what core configurations will be in both packages, however it is likely that the lower power 7-12W ‘Type 4’ package will be for Y-series implementations only, especially given that the overall package size is only 490mm2 (26.5x18.5) compared to 1250 mm2 (50x25), making it 39% the size of the larger high power package. It stands to reason then that the smaller package is for lower performance and low power options, despite being exactly the same silicon.

This Type-4 option also uses the ‘recessed in board’ design we first saw with Broadwell-Y, which is required based on the integrated voltage regulators that Intel now uses on its low powered designs. This makes a very interesting point about Intel’s capabilities with low powered 10nm designs: one could postulate that as the recessed model is well above the traditional Y-series power line. If the 10nm process doesn’t go low down enough in power to that sub-5W range, it could either be because of power, or there isn't enough frequency for Intel to actually sell at volume. Alternatively Intel could end up increasing the base power of the Y-series. One could draw parallels with the first generation 10nm Cannon Lake Core i3-8121U at 15W, which was initially postulated to be dual-core Y-series silicon, rather than the 15W U-series designation it ended up with (our review showed that it did indeed consume more power for the same work compared to a 14nm equivalent design, which would imply a very high static power). With this in mind, it makes me wonder what percentage of Type 3 / Type 4 package designs Intel will end up shipping into the market.

Broadwell Motherboard Design for Recessed Power Implementation

Intel is keen to promote that one of the new features of Ice Lake is its Thin Magnetic Inductor Array, which helps the FIVR achieve better power conversion efficiencies and waste less power. The main issue with a FIVR is at low power consumption states that have a lot of inefficiency – some other processor designs have a linear LDO (Low-Dropout Regulator) implementation which is better for low power designs but less efficient in high power modes.

DL Boost and New Instructions: Intel’s AI Acceleration Attack Using Power More Efficiently: Dynamic Tuning 2.0
Comments Locked

107 Comments

View All Comments

  • s.yu - Thursday, August 1, 2019 - link

    "Charge 4+hrs in 30 mins"
    ...Ok, I think "4+hrs battery life under 30 min. charging" sounds better, or just Intel's version.
  • 29a - Thursday, August 1, 2019 - link

    Should Intel go ahead with the naming scheme, it is going to offer a cluster of mixed messages.

    I believe the word you are looking for there is clusterfuck.
  • ifThenError - Friday, August 2, 2019 - link

    To bad the article doesn't state any further details about the HEVC encoders. Would be interesting to hear if Intel only improved the speed or if they also worked on compression and quality.

    I bought a Gemini Lake system last year to try the encoding in hardware and have very mixed feelings about Intel's Quick Sync since. The encoding speed is impressive with the last generation already, and all the while CPU and GPU are practically in idle. On the downside the image quality and compression ratio is highly underwhelming and not even near usable for “content creation“ or mere transcoding. It suffices for video calls at best. Even encoding h264 in software reaches far better compression efficiency while being not much slower on a low end CPU.

    IIRC Intel promised some “quality mode” for their upcoming encoders, but I can't remember if that was for the gen11 graphics.
  • intel_gene - Friday, August 2, 2019 - link

    There is some information on GNA available. It is accessed through Intel's OpenVINO.
    https://docs.openvinotoolkit.org/latest/_docs_IE_D...
    https://github.com/opencv/dldt/tree/2019/inference...
    There is some background information here:
    https://sigport.org/sites/default/files/docs/Poste...
  • urbanman2004 - Friday, August 2, 2019 - link

    I wonder what happens to Project Athena if none of the products released by the vendor partners/OEMs meet the criteria that Intel's established.
  • GreenReaper - Saturday, August 3, 2019 - link

    Plagues of snakes, owls, eagles, Asari, etc.
  • gambita - Monday, August 5, 2019 - link

    nice of you to do intels bidding and promote and help their pr
  • howtomakedeliciousfood - Thursday, August 8, 2019 - link

    www.howtomakedeliciousfood.com
  • HikariWS - Sunday, August 11, 2019 - link

    These improvements on serial performance are great, it's awesome to have bigger buffers and more execution units. But in clock area it seems to be a big drawback.

    I'm sure clock issues is the reason we won't have any Ice Lake on desktop, and Comet Lake on laptops on the same generation. But, why no 6C Ice Lake? This opened a but alert sign on me.

    But what also called my attention is its IGP power. Most mid range and above laptops ae using nVidia GPU. That's sad for us who want performance and won't play on it, because mid laptops are alrdy all coming with nVidia GPU which makes them more expensive.

    Now I hope to have these segments using Intel IGP and not have nVidia GPU anymore. Good to us on having less money wasted on hardware we don't need, bad for nVidia.
  • nils_ - Wednesday, August 14, 2019 - link

    Can you please stop eating the chips? Yield must be bad enough as it is!

Log in

Don't have an account? Sign up now