AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

On the Heavy test, the caching unambiguously helps the Intel Optane Memory H10, bringing its average data rate up into the range of decent TLC-based NVMe SSDs, when the test is run on an empty drive. The full-drive performance is still better with the cache than without, but ultimately the post-SLC behavior of the QLC NAND cannot be hidden by the Optane. None of the TLC-based drives slow down when full as much as the QLC drives do.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latency scores for the H10 are competitive with TLC drives only when the test is run on an empty drive. When the Heavy test is run on a full drive with a full SLC cache and cold Optane cache, latency is worse than even the hard drive with an Optane cache. The average latency for the H10 in the full-drive case is still substantially better than using the QLC portion alone, but the Optane cache doesn't help the 99th percentile latency at all.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

Average read latencies from the H10 are significantly worse when the Heavy test is run on a full drive, but it's still slightly better than the SATA SSD. The average write latencies are where the QLC stands out, with a full H10 scoring worse than the hard drive, and with the Optane caching disabled write latency is ten times higher than for a TLC SSD.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

The 99th percentile read latency of the H10 with Optane caching off is a serious problem during the full-drive test run, but using the Optane cache brings read QoS back into the decent range for SSDs. The 99th percentile write latency is bad without the Optane cache and worse with it.

AnandTech Storage Bench - The Destroyer AnandTech Storage Bench - Light
Comments Locked

60 Comments

View All Comments

  • The_Assimilator - Tuesday, April 23, 2019 - link

    > I don't understand the purpose of this product.

    It's Intel still trying, and still failing, to make Optane relevant in the consumer space.
  • tacitust - Tuesday, April 23, 2019 - link

    It works in the sense that the OEMs who use this drive will be able to use the fact that customers will be getting cutting edge Optane storage. As the review says, this is a low effort solution, so it likely didn't cost much to develop, so they won't need too many design wins to recoup their costs. It also gets Optane into many more consumer devices, which helps in the long run in terms of perception, if nothing else.

    Note: most users won't know or even care that the drive itself doesn't provide faster performance than other solutions, so it doesn't really matter to Intel either. If they get the design win, Optane does gain relevance in the consumer space, just not with the small segment of power users who read AnandTech for the reviews.
  • ironargonaut - Monday, April 29, 2019 - link

    Seems it does provide faster performance in some usage cases.
    https://www.pcworld.com/article/3389742/intel-opta...
  • CheapSushi - Wednesday, April 24, 2019 - link

    I can't stand these dumb posts where people shut down the usage for consumers. I use it all the time for OS and other programs/files. I use it as cache. I use it for different reasons. Even the cheap early x2 laned variants. I'm not in IT or anything enterprise.
  • name99 - Thursday, April 25, 2019 - link

    It's worse than that.
    The OPTANE team clearly want to sell as many Optanes as they can.
    But INTC management has decided that they can extract maximal money from enterprise by limiting
  • name99 - Thursday, April 25, 2019 - link

    It's worse than that.
    The OPTANE team clearly want to sell as many Optanes as they can.
    But INTC management has decided that they can extract maximal money from enterprise by limiting the actually sensible Optane uses (in the memory system, either as persistent memory ---for enterprise, or as a good place to swap to, for consumers).

    And so we have this ridiculous situation where the Optane team keeps trying to sell Optane in ways that make ZERO sense because the way that makes by far the most sense (sell a 16 or 32 GB or 64GB DIMM that acts as the swap space) is prevented by Intel high management (who presumably are scared that if cheap CPUs can talk to Optane DIMMs, then someone somewhere will figure out how to use them in bulk rather than super expensive special Xeons).
    Corporate dysfunction at its finest...
  • Billy Tallis - Friday, April 26, 2019 - link

    I think it's too soon to say that Intel's artificially holding back Optane DIMMs from market segments where they might have a chance. They had initially planned to have Optane DIMM support in Skylake-SP but couldn't get it working until Cascade Lake, which has only been shipping in volume for a few months. Now that they have got one working Optane-compatible memory controller out the door, they can consider bringing those memory controller features down to other product segments. But we've seen that they have given up on updating the memory controllers on their 14nm consumer parts even to provide LPDDR4 support, which certainly is a more compelling and widely-demanded feature than Optane support. I wouldn't expect Intel to be able to introduce Optane support to their consumer CPUs until their second generation of 10nm (not counting CNL) processors at the earliest. Trying to squeeze it into their first mass-market 10nm would be unreasonable since they should be trying at all costs to avoid feature creep on those parts and just ship something that works and isn't still Skylake.
  • ironargonaut - Monday, April 29, 2019 - link

    Read here for an actual real world usage test. Two system with only memory difference and same input sometimes significantly different results.
    https://www.pcworld.com/article/3389742/intel-opta...
    3X speed up for some tasks. I don't know about ya'll but I multitask a lot at work so I will let background stuff go while I do something else that is in front of me.
  • weevilone - Monday, April 22, 2019 - link

    That's too bad. I tried to tinker with the Optane caching when it launched and it was a software disaster. I wrote it off to early days stuff and put it in my kids' PC when they began to allow non-boot drives to be cached. It was another disaster and Intel's techs couldn't figure it out.

    I wound up re-installing Windows the first time and I had to redo the kids' game drive the second time. No thanks.
  • CheapSushi - Wednesday, April 24, 2019 - link

    The problem is you were using the proprietary HDD caching they marketed. There are so many ways to do drive caching on Windows that doesn't involve that Intel software. It's way better and smoother. even if still software. Software RAID and cache is superior to hardware cache unless you're using $1K+ add-on cards.

Log in

Don't have an account? Sign up now