Gaming: Shadow of the Tomb Raider (DX12)

The latest instalment of the Tomb Raider franchise does less rising and lurks more in the shadows with Shadow of the Tomb Raider. As expected this action-adventure follows Lara Croft which is the main protagonist of the franchise as she muscles through the Mesoamerican and South American regions looking to stop a Mayan apocalyptic she herself unleashed. Shadow of the Tomb Raider is the direct sequel to the previous Rise of the Tomb Raider and was developed by Eidos Montreal and Crystal Dynamics and was published by Square Enix which hit shelves across multiple platforms in September 2018. This title effectively closes the Lara Croft Origins story and has received critical acclaims upon its release.

The integrated Shadow of the Tomb Raider benchmark is similar to that of the previous game Rise of the Tomb Raider, which we have used in our previous benchmarking suite. The newer Shadow of the Tomb Raider uses DirectX 11 and 12, with this particular title being touted as having one of the best implementations of DirectX 12 of any game released so far.

AnandTech CPU Gaming 2019 Game List
Game Genre Release Date API IGP Low Med High
Shadow of the Tomb Raider Action Sep
2018
DX12 720p
Low
1080p
Medium
1440p
High
4K
Highest
*Strange Brigade is run in DX12 and Vulkan modes

All of our benchmark results can also be found in our benchmark engine, Bench.

SoTR IGP Low Medium High
Average FPS
95th Percentile

Diving into Shadow of the Tomb Raider, we have another game that’s mostly GPU-bound at its 1080p settings. At 1080p Medium the 9900K is actually a step behind the 7900K – noisy results in their purest form – while at 720p Low it’s still technically behind the 9700K. Either way, once we turn down our settings low enough to remove the GPU bottleneck, its overall another typical showing for the new CFL-R processors. Intel’s latest and greatest is several percent ahead of its predecessors, but none of these games are in a position to really take advantage of the extra two cores. So instead it’s all about frequency and L3 caches.

Though this game (like so many others) does seem to reinforce the idea that the 9600K is the new 8700K. The 8700K is still ahead by a few frames at CPU-bound settings, but despite losing HT, the 9600K is still hanging in the fight for a noticeably lower price.

Gaming: Far Cry 5 Gaming: F1 2018
Comments Locked

274 Comments

View All Comments

  • Total Meltdowner - Sunday, October 21, 2018 - link

    Those typoes..

    "Good, F U foreigners who want our superior tech."
  • muziqaz - Monday, October 22, 2018 - link

    Same to you, who still thinks that Intel CPUs are made purely in USA :D
  • Hifihedgehog - Friday, October 19, 2018 - link

    What do I think? That it is a deliberate act of desperation. It looks like it may draw more power than a 32-Core ThreadRipper per your own charts.

    https://i.redd.it/iq1mz5bfi5t11.jpg
  • AutomaticTaco - Saturday, October 20, 2018 - link

    Revised
    https://www.anandtech.com/show/13400/intel-9th-gen...

    The motherboard in question was using an insane 1.47v
    https://twitter.com/IanCutress/status/105342741705...
    https://twitter.com/IanCutress/status/105339755111...
  • edzieba - Friday, October 19, 2018 - link

    For the last decade, you've had the choice between "I want really fast cores!" and "I want lots of cores!". This is the 'now you can have both' CPU, and it's surprisingly not in the HEDT realm.
  • evernessince - Saturday, October 20, 2018 - link

    It's priced like HEDT though. It's priced well into HEDT. FYI, you could have had both of those when the 1800X dropped.
  • mapesdhs - Sunday, October 21, 2018 - link

    I noticed initially in the UK the pricing of the 9900K was very close to the 7820X, but now pricing for the latter has often been replaced on retail sites with CALL. Coincidence? It's almost as if Intel is trying to hide that even Intel has better options at this price level.
  • iwod - Friday, October 19, 2018 - link

    Nothing unexpected really. 5Ghz with "better" node that is tuned for higher Frequency. The TDP was the real surprise though, I knew the TDP were fake, but 95 > 220W? I am pretty sure in some countries ( um... EU ) people can start suing Intel for misleading customers.

    For the AVX test, did the program really use AMD's AVX unit? or was it not optimised for AMD 's AVX, given AMD has a slightly different ( I say saner ) implementation. And if they did, the difference shouldn't be that big.

    I continue to believe there is a huge market for iGPU, and I think AMD has the biggest chance to capture it, just looking at those totally playable 1080P frame-rate, if they could double the iGPU die size budget with 7nm Ryzen it would be all good.

    Now we are just waiting for Zen 2.
  • GreenReaper - Friday, October 19, 2018 - link

    It's using it. You can see points increased in both cases. But AMD implemented AVX on the cheap. It takes twice the cycles to execute AVX operations involving 256-bit data, because (AFAIK) it's implemented using 128-bit registers, with pairs of units that can only do multiplies or adds, not both.

    That may be the smart choice; it probably saves significant space and power. It might also work faster with SSE[2/3/4] code, still heavily used (in part because Intel has disabled AVX support on its lower-end chips). But some workloads just won't perform as well vs. Intel's flexible, wider units. The same is true for AVX-512, where the workstation chips run away with it.

    It's like the difference between using a short bus, a full-sized school bus, and a double decker - or a train. If you can actually fill the train on a regular basis, are going to go a long way on it, and are willing to pay for the track, it works best. Oh, and if developers are optimizing AVX code for *any* CPU, it's almost certainly Intel, at least first. This might change in the future, but don't count on it.
  • emn13 - Saturday, October 20, 2018 - link

    Those AVX numbers look like they're measuing something else; not just AVX512. You'd expect performance to increase (compared to AVX256) by around 50%, give or take quite a margin of error. It should *never* be more than a factor 2 faster. So ignore AMD; their AVX implementation is wonky, sure - but those intel numbers almost have to be wrong. I think the baseline isn't vectorized at all, or something like that - that would explain the huge jump.

    Of course, AVX512 is fairly complicated, and it's more than just wider - but these results seem extraordinary; and there' just not enough evidence the effect is real, not just some quirk of how the variations were compiled.

Log in

Don't have an account? Sign up now