Overclocking: 4.0 GHz for 500W

Who said that a 250W processor should not be overclocked? AMD prides itself as being a processor manufacturer that offers every consumer processor as a multiplier unlocked part, as well as using a soldered thermal interface material to assist with thermal dissipation performance. This 2990WX has an X in the same, so let the overclocking begin!

Actually, confession time. We did not have much time to do overclocking by any stretch. This processor has a 3.0 GHz base frequency and a 4.2 GHz turbo frequency, and in an air-conditioned room using the 500W Enermax Liqtech cooler, when running all cores under POV-Ray, we observed each core running around 3150 MHz, which is barely above the turbo frequency. The first thing I did was set the all-core turbo to 4.2 GHz, the same as the single core turbo frequency. That was a bust.

However, the next stage of my overclocking escapades surprised me. I set the CPU to a 40x multiplier in the BIOS, for 4.0 GHz on all the cores, all the time. I did not adjust the voltage, it was kept at auto, and I was leaving the ASUS motherboard to figure it out. Lo and behold, it performed flawlessly through our testing suite at 4.0 GHz. I was shocked.

All I did for this overclock was turn a setting from ‘auto’ to ‘40’, and it breezed through almost every test I threw at it. I say almost every test – our Prime95 power testing failed. But our POV-Ray power testing, which draws more power, worked. Every benchmark in the suite worked. Thermals were high (in the 70s), but the cooler could take it, and with good reason too.

At full load in our POV-Ray test, the processor was listed as consuming 500W. The cooler is rated for 500W. At one point we saw 511W. This was split between 440W for the cores (or 13.8W per core) and 63W for the non-core (IF, IO, IMC) which equates to only 12.5% of the full power consumption. It answers the question from our Infinity Fabric power page - if you want the interconnect to be less of the overall power draw, overclock!

We also tried 4.1 GHz, and that seemed to work as well, although we did not get a full benchmark run out of it before having to pack the system up. As stated above, 4.2 GHz was a no-go, even when increasing the voltage. With tweaking (and the right cooling), it could be possible. For anyone wanting to push here, chilled water might be the way to go.

Performance at 4.0 GHz

So if the all-core frequency was 3125 MHz, an overclock to 4000 MHz all-core should give a 28% performance increase, right? Here are some of the key tests from our suite.

AppTimer: GIMP 2.10.4 (copy)Blender 2.79b bmw27_cpu Benchmark (copy)POV-Ray 3.7.1 Benchmark (copy)WinRAR 5.60b3 (copy)PCMark10 Extended Score (copy)Agisoft Photoscan 1.3.3, Complex Test (copy)

Overclocking the 2990WX is a mixed bag, because of how it does really well in some tests, and how it still sits behind the 2950X in others due to the bi-modal nature of the cores. In the tests were it already wins, it pushes out a lot more: Blender is up 19% in throughput, POV-Ray is up 19%, 3DPM is up 19%. The other tests, is catches back up to the 2950X (Photoscan), or still lags behind (app loading, WinRAR).

Overclocking is not the cure-all for the performance issues on the 2990WX, but it certainly does help.

Power Consumption, TDP, and Prime95 vs POV-Ray Thermal Comparisons and XFR2: Remember to Remove the CPU Cooler Plastic!
Comments Locked

171 Comments

View All Comments

  • NevynPA - Tuesday, August 14, 2018 - link

    Will there be results for WX chips in 'Game Mode' at various core/thread counts (6/12,8/16,12/24)?
  • jospoortvliet - Saturday, August 18, 2018 - link

    It has no game mode. Don't bother buying it for games...
  • jts888 - Tuesday, August 14, 2018 - link

    What is the methodology used for the core/uncore power breakdown? Where was a physical measurement or software reading taken, and what were the loads used?

    Furthermore, Zen uses single-ended signaling for IF links with alleged even further reduced power draw when in transient no-send states, so there should be at least two clearly explained tests done (i.e., both high and low inter-thread/core/sock bandwidth, with NUMA allocations detailed) before interconnect power breakdowns can be credibly presented as flat metrics of the architectures investigated.

    Although this review is still a work in progress, it needs some substantial improvements in clarity given the strength of the claims made and conclusions drawn.
  • ktmrc8 - Thursday, August 16, 2018 - link

    Let me add my voice to those asking for further elaboration on this point. I think it's very interesting, but I would like enough detail so that I could possibly replicate your data. In particular, I the charts showing power consumption decreasing as number of loaded threads increase counter-intuitive (at least for me!). Thanks.
  • Sahrin - Tuesday, August 14, 2018 - link

    The link power is a problem, but I get the feeling that nowhere near the power optimization went into IF as went into the cores.
  • notfeelingit - Tuesday, August 14, 2018 - link

    What's up with the 2950X crazy low score for the PCMark10 Startup Test? Is that repeatable?
  • crotach - Tuesday, August 14, 2018 - link

    So, 2700X looks like a clear winner here?
  • GreenReaper - Wednesday, August 15, 2018 - link

    For the average consumer, yes. It's a sweet spot. Heck, most would do fine with an APU. You don't expect a truck to win a race. Small engines tend to be more efficient; they're just limited in raw power.
  • witeko - Tuesday, August 14, 2018 - link

    hi, can we have some tests regarding data processing (spark, dask), machine learning (lightGBM/xgboost training), deep learning (i know there are GPUs) just to get a feeling (there are pre-made benchmarks for tensorflow) ? And also some reviews point to win10 vs linux differences for example in the zip test.
  • farmergann - Tuesday, August 14, 2018 - link

    Really should have included the Epyc 7401p as it's a serious contender in this price range (only $1,000).

Log in

Don't have an account? Sign up now