SPEC CPU2006 Cont: Per-Core Performance w/SMT

Moving beyond single-threaded performance, multi-threaded performance within the confines of a single core is of course also important. The Vulcan CPU architecture was designed from the start to leverage SMT4 to keep its cores occupied and boost their overall throughput, so this is where we'll look next.

SPEC CPU2006: Single Core w/SMT
Subtest
SPEC CPU2006
Integer
Application Type Cavium
ThunderX
2 GHz
gcc 5.2
1 thread
Cavium
ThunderX2
@2.5 GHz
gcc 7.2
4 threads
Xeon
8176
@3.8 GHz
gcc 7.2
2 threads
Thunder
X2
vs
Xeon 8176
Thunder
X2
vs
ThunderX
400.perlbench Spam filter 8.3 24.1 50.6 48% 290%
401.bzip2 Compression 6.5 22.9 31.9 72% 350%
403.gcc Compiling 10.8 35 38.1 92% 330%
429.mcf Vehicle scheduling 10.2 52.4 50.6 104% 510%
445.gobmk Game AI 9.2 25.1 35.6 71% 270%
456.hmmer Protein seq. analyses 4.8 26.7 41 65% 560%
458.sjeng Chess 8.8 22.4 37.1 60% 250%
462.libquantum Quantum sim 5.8 83.6 83.2 100% 1440%
464.h264ref Video encoding 11.9 34 66.8 51% 290%
471.omnetpp Network sim 7.3 31.1 41.1 76% 440%
473.astar Pathfinding 7.9 27.2 33.8 80% 340%
483.xalancbmk XML processing 8.4 33.8 75.3 45% 400%

First of all, the ThunderX2 core is a massive improvement over the simple ThunderX core. Even excluding libquantum – that benchmark could easily run 3 times faster on the older ThunderX core after some optimization and compiler improvements – the new ThunderX2 is no less than 3.7 times faster than its older brother. This kind of an IPC advantage makes the original ThunderX's 50% core advantage all but irrelevant.

Looking at the impact of SMT, on average, we see that 4-way SMT improves the ThunderX2's performance by 32%. This ranges from 8% for video encoding to 74% for pathfinding. Intel meanwhile gets a 18% boost from their 2-way SMT, ranging from 4% to 37% in the same respective scenarios.

Overall, a boost of 32% for the ThunderX2 is decent. But it does invite an obvious comparison: how does it fare relative to another SMT4 architecture? Looking at IBM's POWER8, which also supports SMT4, at first glance there seems to be some room for improvement, as the POWER8 sees a 76% boost in the same scenario.

However this isn't entirely an apples-to-apples comparison, as the IBM chip had a much wider back-end: it could issue 10 instructions while the ThunderX2 core is limited to 6 instructions per cycle. The POWER8 core was also much more power hungry: it could fit only 10 of those ultra-wide cores inside a 190W power budget on a 22 nm process. In other words, further increasing the performance gains from using SMT4 would likely require even wider cores, and in turn seriously impact the total number of cores available inside the ThunderX2. Still, it is interesting to put that 32% number into perspective.

Single-Threaded Integer Performance: SPEC CPU2006 Java Performance
Comments Locked

97 Comments

View All Comments

  • DrizztVD - Wednesday, May 23, 2018 - link

    It amazes me how the one big advantage ARM could have is the power efficiency, yet no power efficiency numbers in this review? It's like someone just isn't thinking about what can best showcase the ARM advantage and testing it.
  • boeush - Thursday, May 24, 2018 - link

    You must have missed this bit:

    "So as is typically the case for early test systems, we are not able to do any accurate power comparisons.

    In fact, Cavium claims that the actual systems from HP, Gigabyte and others will be far more power efficient."

    This was an early (and apparently quite buggy, especially from the power management standpoint) test system. It's not representative of final production systems in these respects, so doing what you request on it would only put a very crude lower bound on efficiency, at best.

    That's why the final section of the write-up has a title ending in ": so far"... (obviously, there will be more to come if/when real production-quality systems are available for benchmarking/analysis.)
  • ZolaIII - Thursday, May 24, 2018 - link

    It's broken currently on the MB. If you want to see real power/performance metrics for a SoC made on comparable lithography to the lintels 14 nm (aka TSMC 10nm) & with optimised software read this:
    https://blog.cloudflare.com/neon-is-the-new-black/
  • drwho9437 - Wednesday, May 23, 2018 - link

    Thanks Johan, I've been reading since Ace's. I can't believe it has been more almost 20 years. Even though I don't work in this market I still read everything you write.
  • JohanAnandtech - Friday, May 25, 2018 - link

    It was indeed almost 20 years ago that I published my first article about the K6-2 vs Pentium MMX. And Anand's star was about to rise with the launch of the K6-3 :-).
  • Spatz - Wednesday, May 30, 2018 - link

    Wow. Aces hardware... that used to be my go to for hardware reviews back in the day. I can’t believe your still at it! This article was great. Keep up the good work.
  • beginner99 - Thursday, May 24, 2018 - link

    So it for sure is an option. however I d not get the focus on price. The CPU cost is a small fraction of the total server cost and a tiny if infrastructure cost (network, HVAC,...) is included. Add to that the software and data running on that server and if your CPU is 5% faster at same power it costing $5000 more might be totally worth it.
  • Apple Worshipper - Thursday, May 24, 2018 - link

    Errmm... does ARM feature SMT now?
  • Ryan Smith - Thursday, May 24, 2018 - link

    Not in Arm's own cores. But in Cavium's ThunderX2, yes.
  • sgeocla - Thursday, May 24, 2018 - link

    What's up with EPYC comparison missing in almost all benchmarks?
    EPYC has been out for a while and the only benchmarks are from almost a year ago?

Log in

Don't have an account? Sign up now