AMD and Intel Have Different HPET Guidance

A standard modern machine, with a default BIOS and a fresh Windows operating system, will sit on the first situation in the table listed above: the BIOS has HPET enabled, however it is not explicitly forced in the operating system. If a user sets up their machine with no overclocking or monitoring software, which is the majority case, then this is the implementation you would expect for a desktop.

AMD

We reached out to AMD and Intel about their guidance on HPET, because in the past it has both been unclear as well as it has been changed. We also reached out to motherboard manufacturers for their input.

For those that remember the Ryzen 7 1000-series launch, about a year ago from now, one point that was lightly mentioned among the media was that in AMD’s press decks, it was recommended that for best performance, HPET should be disabled in the BIOS. Specifically it was stated that:

Make sure the system has Windows High Precision Event Timer (HPET) disabled. HPET can often be disabled in the BIOS. [T]his can improve performance by 5-8%.

The reasons at the time were unclear as to why, but it was a minor part in the big story of the Zen launch so it was not discussed in detail. However, by the Ryzen 5 1000-series launch, that suggestion was no longer part of the reviewer guide. By the time we hit the Ryzen-2000 series launched last week, the option to adjust HPET in the BIOS was not even in the motherboards we were testing. We cycled back to AMD about this, and they gave the following:

The short of it is that we resolved the issues that caused a performance difference between on/off. Now that there is no need to disable HPET, there is no need for a toggle [in the BIOS].

Interestingly enough, with our ASUS X470 motherboard, we did eventually find the setting for HPET – it was not in any of the drop down menus, but it could be found using their rather nice ‘search’ function. I probed ASUS about whether the option was enabled in the BIOS by default, given that these options were not immediately visible, and was told:

It's enabled and never disabled, since the OS will ignore it by default. But if you enable it, then the OS will use it – it’s always enabled, that way if its needed it is there, as there would be no point in pulling it otherwise.

So from an AMD/ASUS perspective, the BIOS is now going to always be enabled, and it needs to be forced in the OS to be used, however the previous guidance about disabling it in the BIOS has now gone, as AMD expects performance parity.

It is worth noting that AMD’s tool, Ryzen Master, requires a system restart when the user first loads it up. This is because Ryzen Master, the overclocking and monitoring tool, requires HPET to be forced in order to do what it needs to do. In fact, back at the Ryzen 7 launch in 2017, we were told:

AMD Ryzen Master’s accurate measurements present require HPET. Therefore it is important to disable HPET if you already installed and used Ryzen Master prior to game benchmarking.

Ultimately if any AMD user has Ryzen Master installed and has been run at any point, HPET is enabled, even if the software is not running or uninstalled. The only way to stop it being forced in the OS is with a command to chance the value in the BCD, as noted above.

For the Ryzen 2000-series launch last week, Ryzen Master still requires HPET to be enabled to run as intended. So with the new guidance that HPET should have minimal effect on benchmarks, the previous guidance no longer applies.

Ryzen Master is not the only piece of software that requires HPET to be forced in order to do what it needs to do. For any of our readers that have used overclocking software and tools before, or even monitoring tools such as fan speed adjusters – if those tools have requested a restart before being used properly, there is a good chance that in that reboot the command has been run to enable HPET. Unfortunately it is not easy to generate a list, as commands and methods may change from version to version, but it can apply to CPU and GPU overclocking.

Intel

The response we had from Intel was a little cryptic:

[The engineers recommend that] as far as benchmarking is concerned, it should not matter whether or not HPET is enabled or not. There may be some applications that may not function as advertised if HPET is disabled, so to be safe, keep it enabled, across all platforms. Whatever you decide, be consistent across platforms.

A cold reading of this reply would seem to suggest that Intel is recommended HPET to be forced and enabled, however my gut told me that Intel might have confused ‘on’ in the BIOS with ‘forced’ through the OS, and I have asked them to confirm.

Looking back at our coverage of Intel platforms overall, HPET has not been mentioned to any sizeable degree. I had two emails back in 2013 from a single motherboard manufacturer stating that disabling HPET in the BIOS can minimise DPC latency on their motherboard, however no comment was made about general performance. I cannot find anything explicitly from Intel though.

A Timely Re-Discovery Forcing HPET On, Plus Spectre and Meltdown Patches
Comments Locked

242 Comments

View All Comments

  • Cooe - Wednesday, April 25, 2018 - link

    Chris Hook was a marketing guy through and through and was behind some of AMD's worst marketing campaigns in the history of the company. Him leaving is total non-issue in my eyes and potentially even a plus assuming they can replace him with someone that can actually run good marketing. That's always been one of AMD's most glaring weak spots.
  • HilbertSpace - Wednesday, April 25, 2018 - link

    Thanks for the great follow up article. Very informative.
  • Aichon - Wednesday, April 25, 2018 - link

    I laud with your decision to reflect default settings going forward, since the purpose of these reviews is to give your reader a sense of how these chips compare to each other in various forms of real-world usage.

    As to the closing question of how these settings should be reflected to readers, I think the ideal case (read: way more work than I'm actually expecting you to do) would be that you extend the Benchmarking Setup page in future reviews to include mention of any non-default settings you use, with details about which setting you chose, why you set it that way, and, optionally, why someone might want to set it differently, as well as how it might impact them. Of course, that's a LOAD of work, and, frankly, a lot of how it might impact other users in unknown workflows would be speculation, so what you end up doing should likely be less than that. But doing it that way would give us that information if we want it, would tell us how our usage might differ from yours, and, for any of us who don't want that information, would make it easy to skip past.
  • phoenix_rizzen - Wednesday, April 25, 2018 - link

    Would be interesting to see a series of comparisons for the Intel CPU:

    No Meltdown, No Spectre, HPET default
    No Meltdown, No Spectre, HPET forced
    Meltdown, No Spectre, HPET default
    Meltdown, No Spectre, HPET forced

    To compare to the existing Meltdown, Spectre, HPET default/forced results.

    Will be interesting to see just what kind of performance impact Meltdown/Spectre fixes really have.

    Obviously, going forward, all benchmarks should be done with full Meltdown/Spectre fixes in place. But it would still be interesting to see the full range of their effects on Intel CPUs.
  • lefty2 - Wednesday, April 25, 2018 - link

    Yes, I'd like to second this suggestion ;) . No one has done any proper analysis of the Meltdown/Spectre performance on Windows since Intel and AMD released the final microcode mitigations. (i.e post April 1st).
  • FreckledTrout - Wednesday, April 25, 2018 - link

    I agree as the timing makes this very curious. One would think this would have popped up before this review. I get this gut feeling the HPET being forced is causing a much greater penalty with the Meltdown and Spectre patches applied.
  • Psycho_McCrazy - Wednesday, April 25, 2018 - link

    Thanks to Ryan and Ian for such a deep dive into the matter and for finding out what the issue was...
    Even though this changes the gaming results a bit, still does not change the fact that the 2700x is a very very competent 4k gamer cpu.
  • Zucker2k - Wednesday, April 25, 2018 - link

    You mean gpu-bottle-necked gaming? Sure!
  • Cooe - Wednesday, April 25, 2018 - link

    But to be honest, the 8700K's advantage when totally CPU limited isn't all that fantastic though either. Sure, there are still a handful of titles that put up notable 10-15% advantages, most are now well in the realm of 0-10%, with many titles now in a near dead heat which compared to the Ryzen 7 vs Kaby Lake launch situation is absolutely nuts. Hell, even when comparing the 1st Gen chips today vs then; the gaps have all shrunk dramatically with no changes in hardware and this slow & steady trend shows no signs of petering out (Zen in particular is an arch design extraordinarily ripe for software level optimizations). Whereas there were a good number of build/use scenerios where Intel was the obviously superior option vs 1st Gen Ryzen, with how much the gap has narrowed those have now shrunk into a tiny handful of rather bizarre niches.

    These being those first & foremost gamers whom use a 1080p 144/240Hz monitor with at least a GTX 1080/Vega 64. For most everyone with more realistic setups like 1080p 60/75Hz with a mid-range card or a high end card paired with 1440p 60/144Hz (or 4K 60Hz), the Intel chip is going to have all of no gaming performance advantage whatsoever, while being slower to a crap ton slower than Ryzen 2 in any sort of multi-tasking scenerio, or decently threaded workload(s). And unlike Ryzen's notable width advantage, Intel's in general single-thread perf is most often near impossible to notice without both systems side by side and a stopwatch in hand, while running a notoriously single-thread heavy load like some serious Photoshop (both are already so fast on a per-core basis that you pretty much deliberately have to seek out situations where there'll be a noticeable difference, whereas AMD's extra cores/threads & superior SMT becomes readily apparent as soon as you start opening & running more and more things concurrently. (All modern OS' are capable of scaling to as many cores/threads as you can find them).

    Just my 2 cents at least. While the i7-8700K was quite compelling for a good number of use-cases vs Ryzen 1, it just.... well isn't vs Ryzen 2.
  • Tropicocity - Monday, April 30, 2018 - link

    The thing is, any gamer (read: gamer!) looking to get a 2700x or an 8700k is very likely to be pairing it with at least a GTX 1070 and more than likely either a 1080/144, a 1444/60, or a 1440/144 monitor. You don't generally spend $330-$350/ £300+ on a CPU as a gamer unless you have sufficient pixel-pushing hardware to match with it.
    Those who are still on 1080/60 would be much more inclined to get more 'budget' options, such as a Ryzen 1400-1600, or an 8350k-8400.

    There is STILL an advantage at 1440p, which these results do not show. At 4k, yes, the bottleneck becomes almost entirely the GPU, as we're not currently at the stage where that resolution is realistically doable for the majority.

    Also, as a gamer, you shouldn't neglect the single-threaded scenario. There are a few games who benefit from extra cores and threads sure, but if you pick the most played games in the world, you'll come to see that the only thing they appreciate is clock speed and single (occasionally dual) threaded workloads. League of Legends, World of Warcraft, Fortnite, CS:GO etc etc.

    The games that are played by more people globally than any other, will see a much better time being played on a Coffee Lake CPU compared to a Ryzen.

    You do lose the extra productivity, you won't be able to stream at 10mbit (Twitch is capped to 6 so its fine), but you Will certainly have improvements when you're playing the game for yourself.

    Don't get me wrong here; I agree that Ryzen 2 vs Coffee Lake is a lot more balanced and much closer in comparison than anything in the past decade in terms of Intel vs AMD, but to say that gamers will see "no performance advantage whatsoever" going with an Intel chip is a little too farfetched.

Log in

Don't have an account? Sign up now