Grand Theft Auto

The highly anticipated iteration of the Grand Theft Auto franchise hit the shelves on April 14th 2015, with both AMD and NVIDIA in tow to help optimize the title. GTA doesn’t provide graphical presets, but opens up the options to users and extends the boundaries by pushing even the hardest systems to the limit using Rockstar’s Advanced Game Engine under DirectX 11. Whether the user is flying high in the mountains with long draw distances or dealing with assorted trash in the city, when cranked up to maximum it creates stunning visuals but hard work for both the CPU and the GPU.

For our test we have scripted a version of the in-game benchmark. The in-game benchmark consists of five scenarios: four short panning shots with varying lighting and weather effects, and a fifth action sequence that lasts around 90 seconds. We use only the final part of the benchmark, which combines a flight scene in a jet followed by an inner city drive-by through several intersections followed by ramming a tanker that explodes, causing other cars to explode as well. This is a mix of distance rendering followed by a detailed near-rendering action sequence, and the title thankfully spits out frame time data.

There are no presets for the graphics options on GTA, allowing the user to adjust options such as population density and distance scaling on sliders, but others such as texture/shadow/shader/water quality from Low to Very High. Other options include MSAA, soft shadows, post effects, shadow resolution and extended draw distance options. There is a handy option at the top which shows how much video memory the options are expected to consume, with obvious repercussions if a user requests more video memory than is present on the card (although there’s no obvious indication if you have a low end GPU with lots of GPU memory, like an R7 240 4GB).

To that end, we run the benchmark at 1920x1080 using an average of Very High on the settings, and also at 4K using High on most of them. We take the average results of four runs, reporting frame rate averages, 99th percentiles, and our time under analysis.

All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance


1080p

4K

Gaming Performance: Rocket League Conclusion: Catching the Incumbent
Comments Locked

545 Comments

View All Comments

  • jor5 - Thursday, April 26, 2018 - link

    Pull this shambles and repost when you've corrected it fully.
  • mapesdhs - Monday, May 14, 2018 - link

    Not an argument. It is just as interesting to learn about how and why this issue occured, to understand the nature of benchmarking. Life isn't just about being spoonfed end nuggets of things, the process itself is relevant. Or would you rather we don't learn from history?
  • peevee - Thursday, April 26, 2018 - link

    When 65W i7 8700 is 15% faster in Octane 2.0 than 105W Rizen 7 2700x, it is just sad.

    Of course, the horrible x64 practically demands than compilers must optimize for a very specific CPU implementation (choosing and sorting instructions in the code accordingly), AMD could have at least realized the fact and optimize their own implementation for the same Intel-optimized code generators...
  • GreenReaper - Thursday, April 26, 2018 - link

    Intel compilers and libraries tend not to use the ideal instructions unless they detect a GenuineIntel signature via CPUID - it'll likely use the default lowest-common-denominator pathway instead.

    TDP is more of a guideline - it doesn't determine actual power usage (we've seen Coffee Lake use way more than the TDP), let alone the power used in a particular operation. Having said that, I wouldn't be surprised if Intel were more efficient in this particular test. But it'd be interesting to know how much impact Meltdown patches have in that area; they might well increase the amount of time the CPU spends idle (but not idle enough to go into a sleep mode) as it waited to fetch instructions.
  • SaturnusDK - Thursday, April 26, 2018 - link

    Compare power consumption to blender score. Ryzen is about 9% more power efficient.

    TDP is literally Thermal Design Power. It has nothing to do with power consumption.
  • peevee - Thursday, April 26, 2018 - link

    "TDP is literally Thermal Design Power. It has nothing to do with power consumption."

    Unless you have invented a way to overcome energy conservation law, power consumed = power dissipated.
  • SaturnusDK - Friday, April 27, 2018 - link

    It's a guideline for cooling solutions. Look at the power consumption numbers in this test for example.

    Ryzen 2700X power consumption under full load 110W.
    Intel i7 8700K power consumption under full load 120W.

    Both are at stock speeds with the Ryzen having 8 cores versus 6 cores, and scoring 2700X 24% higher Cinebench scores. Ryzen is rated at 105W TDP so actual power consumption at stock speed is pretty close. The 8700K uses 120W so it's pretty far from the 95W TDP it is rated at.
  • ijdat - Saturday, April 28, 2018 - link

    The 8700 also uses 120W so it's even further from the 65W TDP it's rated at. In comparison Ryzen 2700 uses 45W when it has the same rated 65W TDP. I know which one I'd prefer to put into a quiet low-power system...
  • mapesdhs - Monday, May 14, 2018 - link

    Perhaps this is AMD's biggest win this time round, potent HTPC setups.
  • peevee - Thursday, April 26, 2018 - link

    "Intel compilers "

    What Intel compilers have to do with it?

Log in

Don't have an account? Sign up now