AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)

The Light test allows the flash-based SSDs to make the most of their write caching throughout the test, so even the 900p is surpassed by the Samsung NVMe SSDs while the 800p ranks with the budget NVMe drives. When the drives are full and the flash-based SSDs get bogged down with garbage collection, the 900p comes out ahead but the 800p still trails behind the Samsung 960 PRO. The VROC configuration look especially poor in terms of average data rate, and the RAID-5 performance is surprisingly low.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The Optane SSD 800p scores in the middle tier of SSDs for average latency on the Light test, and VROC RAID is no help here. VROC does help with the 99th percentile latencies, but without it the 800p looks like a low-end drive that merely doesn't have garbage collection problems.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

The average read latencies from the 800p are almost twice as high as those from the 900p, and VROC's overhead only makes it worse. The average write latencies of the 900p aren't as good as the best flash-based SSDs, and the write latency of the 800p is well over twice that of the 900p.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)

The 99th percentile latency scores from the 800p are not great, but at least the drives perform just as well when full. Small flash-based drives are the most heavily affected when constant garbage collection becomes necessary.

ATSB - Light (Power)

The Light test is a fairly short run with any of these drives, but the 800p still manages to return extremely good power usage numbers that are well ahead of any flash-based NVMe SSD.

AnandTech Storage Bench - Heavy Random Performance
POST A COMMENT

116 Comments

View All Comments

  • MrSpadge - Friday, March 09, 2018 - link

    Did you ever had an SSD run out of write cycles? I've personally only witnessed one such case (old 60 GB drive from 2010, old controller, being almost full all the time), but numerous other SSD deaths (controller, Sandforce or whatever). Reply
  • name99 - Friday, March 09, 2018 - link

    I have an SSD that SMART claims is at 42%. I'm curious to see how this plays out over the next three years or so.

    But yeah, I'd agree with your point. I've had two SSDs so far fail (many fewer than HDs, but of course I've owned many more HDs and for longer) and both those failures were inexplicable randomness (controller? RAM?) but they certainly didn't reflect the SSD running out of write cycles.

    I do have some very old (heavily used) devices that are flash based (iPod nano 3rd gen) and they are "failing" in the expected SSD fashion --- getting slower and slower, and can be goosed with some speed for another year by giving them a bulk erase. Meaning that it does seem that SSDs "wear-out" failure (when everything else is reliable) happens as claimed --- the device gets so slow that at some some point you're better off just moving to a new one --- but it takes YEARS to get there, and you get plenty of warning, not unexpected medium failure.
    Reply
  • MonkeyPaw - Monday, March 12, 2018 - link

    The original Nexus 7 had this problem, I believe. Those things aged very poorly. Reply
  • 80-wattHamster - Monday, March 12, 2018 - link

    Was that the issue? I'd read/heard that Lollipop introduced a change to the cache system that didn't play nicely with Tegra chips. Reply
  • sharath.naik - Sunday, March 11, 2018 - link

    the Endurance listed here is barely better than MLC. it is not where close to even SLC Reply
  • Reflex - Thursday, March 08, 2018 - link

    https://www.theregister.co.uk/2016/02/01/xpoint_ex...

    I know ddriver can't resist continuing to use 'hypetane' but seriously looking at this article, Optane appears to be a win nearly across the board. In some cases quite significantly. And this is with a product that is constrained in a number of ways. Prices also are starting at a much better place than early SSD's did vs HDD's.

    Really fantastic early results.
    Reply
  • iter - Thursday, March 08, 2018 - link

    You need to lay off whatever you are abusing.

    Fantastic results? None of the people who can actually benefit from its few strong points are rushing to buy. And for everyone else intel is desperately flogging it at it is a pointless waste of money.

    Due to its failure to deliver on expectations and promisses, it is doubtful intel will any time soon allocate the manufacturing capacity it would require to make it competitive to nand, especially given its awful density. At this time intel is merely trying to make up for the money they put into making it. Nobody denies the strong low queue depth reads, but that ain't enough to make it into a money maker. Especially not when a more performant alternative has been available since before intel announced xpoint.
    Reply
  • Alexvrb - Thursday, March 08, 2018 - link

    Most people ignore or gloss over the strong low QD results, actually. Which is ironic given that most of the people crapping all over them for having the "same" performance (read: bars in extreme benchmarks) would likely benefit from improved performance at low QD.

    With that being said capacity and price are terrible. They'll never make any significant inroads against NAND until they can quadruple their current best capacity.
    Reply
  • Reflex - Thursday, March 08, 2018 - link

    Alex - I'm sure they are aware of that. I just remember how consumer NAND drives launched, the price/perf was far worse than this compared to HDD's, and those drives still lost in some types of performance (random read/write for instance) despite the high prices. For a new tech, being less than 3x while providing across the board better characteristics is pretty promising. Reply
  • Calin - Friday, March 09, 2018 - link

    SSD never had a random R/W problem compared to magnetic disks, not even if you compared them by price to RAIDs and/or SCSI server drives. What problem they might had at the beginning was in sequential read (and especially write) speed. Current sequential write speeds for hard drives are limited by the rpm of the drive, and they reach around 150MB/s for a 7200 rpm 1TB desktop drive. Meanwhile, the Samsung 480 EVO SSD at 120GB (a good second or third generation SSD) reaches some 170MB/s sequential write.
    Where the magnetic rotational disk drives suffer a 100 times reduction in performance is random write, while the SSD hardly care. This is due to the awful access time of hard drives (move the heads and wait for the rotation of the disks to bring the data below the read/write heads) - that's 5-10 milliseconds wait time for each new operation).
    Reply

Log in

Don't have an account? Sign up now