Board Features

The ASUS ROG Maximus Apex motherboard started out with a keen focus on overclocking since it started and not much has changed since. ASUS includes the Overclockers' toolkit consisting of hardware-level controls and integrated condensation detection useful in subzero overclocking. The board features an optimized 2-DIMM memory trace layout ASUS says aids in stability and performance allowing for DDR4 support up to DDR4-4500+. Outside of the overclocking features, the board uses the latest Realtek ALC1220 codec that was tweaked specifically for ASUS and also includes 5G Ethernet in case Gigabit just isn't enough. The Apex is a well-rounded board fit for all types of users and uses without forgetting about the overclocking crowd. 

ASUS ROG Maximus X Apex
Warranty Period 3 Years
Product Page LINK
Price $395 (Amazon) 
Size E-ATX
CPU Interface LGA1151
Chipset Intel Z370
Memory Slots (DDR4) Two DDR4
Dual Channel
Supporting 32GB
Up to DDR4 4500
Network Connectivity / Wi-Fi 1 x Intel I219V GbE
1 x Aquantia AQC108 5 Gbit
Onboard Audio Realtek ALC1220 7.1ch surround
Video Outputs 1 x HDMI (2.0)
1 x DisplayPort (1.2)
PCIe Slots for Graphics (from CPU)  3 x PCIe 3.0 (x16, x8/-/x8, x8/x4/x4)
PCIe Slots for Other (from PCH) 1 x PCIe 3.0 x4
2 x PCIe 3.0/2.0 x1
Onboard SATA 4 x RAID 0/1/5/10
Onboard SATA Express None
Onboard M.2 1 x PCIe 3.0 x4 and SATA modes
1 x PCIe 3.0 x4 
Onboard U.2 None
USB 3.1 ASMedia ASM3142
1 x Type-A
1 x Type-C
USB 3.0 Chipset
6 x back panel
2 x onboard headers
USB 2.0 Chipset
6 x onboard headers
Power Connectors 1 x 24-pin ATX
1 x 8-pin CPU
1 x 8-pin CPU (Optional)
Fan Headers 1 x 4-pin CPU
1 x 4-pin CPU OPT
3 x Chassis Fan
1 x AIO Pump
1 x Water Pump (3A/36W)
3 x Full Speed Fan headers
IO Panel 1 x PS/2 Keyboard
1 x PS/2 Mouse
1 x DisplayPort
1 x HDMI (2.0)
1 x Wi-Fi
1 x LAN (RJ45 port)
1 x Optical SPDIF Out port
1 x Clear CMOS Button
1 x USB BIOS Flashback Button
1 x 7.1-ch Audio jacks
6 x USB 3.0
2 x USB 3.1
1 x 5G LAN (RJ45)

Test Bed

As per our testing policy, we take a high-end CPU suitable for the motherboard that was released during the socket’s initial launch and equip the system with a suitable amount of memory running at the processor maximum supported frequency. This is also typically run at JEDEC sub timings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend our testing to include faster memory modules either at the same time as the review or a later date.

Readers of our motherboard review section will have noted the trend in modern motherboards to implement a form of MultiCore Enhancement / Acceleration / Turbo (read our report here) on their motherboards. This does several things, including better benchmark results at stock settings (not entirely needed if overclocking is an end-user goal) at the expense of heat and temperature. It also gives, in essence, an automatic overclock which may be against what the user wants. Our testing methodology is ‘out-of-the-box’, with the latest public BIOS installed and XMP enabled, and thus subject to the whims of this feature. It is ultimately up to the motherboard manufacturer to take this risk – and manufacturers taking risks in the setup is something they do on every product (think C-state settings, USB priority, DPC Latency/monitoring priority, overriding memory sub-timings at JEDEC). Processor speed change is part of that risk, and ultimately if no overclocking is planned, some motherboards will affect how fast that shiny new processor goes and can be an important factor in the system build.

Test Setup
Processor Intel i7 8700K (6C/12T, 3.7G, 95W)
Motherboard ASUS ROG Maximus X Apex (BIOS 1003)
Cooling Corsair H115i
Power Supply Corsair HX750
Memory Corsair Vengeance LPX 4x8GB DDR4 2666 CL16
Corsair Vengeance 4x4GB DDR4 3200 CL16

(used in 2x 4/8GB capacity on dual Channel Platform
Memory Settings DDR4 2666 CL16-18-18-35 2T
Video Cards ASUS Strix GTX 980
Hard Drive Crucial MX300 1TB
Optical Drive TSST TS-H653G
Case Open Test Bed
Operating System Windows 10 Pro 64-bit

Many thanks to...

We must thank the following companies for kindly providing hardware for our multiple test beds. Some of this hardware is not in this testbed specifically but is used in other testing.

Thank you to ASUS for providing us with GTX 980 Strix GPUs. At the time of release, the STRIX brand from ASUS was aimed at silent running, or to use the marketing term: '0dB Silent Gaming'. This enables the card to disable the fans when the GPU is dealing with low loads well within temperature specifications. These cards equip the GTX 980 silicon with ASUS' Direct CU II cooler and 10-phase digital VRMs, aimed at high-efficiency conversion. Along with the card, ASUS bundles GPU Tweak software for overclocking and streaming assistance.

The GTX 980 uses NVIDIA's GM204 silicon die, built upon their Maxwell architecture. This die is 5.2 billion transistors for a die size of 298 mm2, built on TMSC's 28nm process. A GTX 980 uses the full GM204 core, with 2048 CUDA Cores and 64 ROPs with a 256-bit memory bus to GDDR5. The official power rating for the GTX 980 is 165W.

The ASUS GTX 980 Strix 4GB (or the full name of STRIX-GTX980-DC2OC-4GD5) runs a reasonable overclock over a reference GTX 980 card, with frequencies in the range of 1178-1279 MHz. The memory runs at stock, in this case, 7010 MHz. Video outputs include three DisplayPort connectors, one HDMI 2.0 connector, and a DVI-I.

Further Reading: AnandTech's NVIDIA GTX 980 Review

 

Thank you to Crucial for providing us with MX300 SSDs. Crucial stepped up to the plate as our benchmark list grows larger with newer benchmarks and titles, and the 1TB MX300 units are strong performers. Based on Marvell's 88SS1074 controller and using Micron's 384Gbit 32-layer 3D TLC NAND, these are 7mm high, 2.5-inch drives rated for 92K random read IOPS and 530/510 MB/s sequential read and write speeds.

The 1TB models we are using here support TCG Opal 2.0 and IEEE-1667 (eDrive) encryption and have a 360TB rated endurance with a three-year warranty.

Further Reading: AnandTech's Crucial MX300 (750 GB) Review

 

Thank you to Corsair for providing us with Vengeance LPX DDR4 Memory, HX750 Power Supply, and H115i CPU Cooler

Corsair kindly sent a 4x8GB DDR4 2666 set of their Vengeance LPX low profile, high-performance memory for our stock testing. The heatsink is made of pure aluminum to help remove heat from the sticks and has an eight-layer PCB. The heatsink is a low profile design to help fit in spaces where there may not be room for a tall heat spreader; think a SFF case or using a large heatsink. Timings on this specific set come in at 16-18-18-35. The Vengeance LPX line supports XMP 2.0 profiles for easily setting the speed and timings. It also comes with a limited lifetime warranty. 

Powering the test system is Corsair's HX750 Power Supply. This HX750 is a dual mode unit able to switch from a single 12V rail (62.5A/750W) to a five rail CPU (40A max ea.) and is also fully modular. It has a typical selection of connectors, including dual EPS 4+4 pin four PCIe connectors and a whopping 16 SATA power leads, as well as four 4-pin Molex connectors.

The 135mm fluid dynamic bearing fan remains off until it is 40% loaded offering complete silence in light workloads. The HX750 comes with a ten-year warranty. 

In order to cool these high-TDP HEDT CPUs, Corsair sent over its latest and largest AIO in the H115i. This closed-loop system uses a 280mm radiator with 2x140mm SP140L PWM controlled fans. The pump/block combination mounts to all modern CPU sockets. Users are also able to integrate this cooler into the Corsair link software via USB for more control and options. 

BIOS and Software Benchmark Overview
Comments Locked

39 Comments

View All Comments

  • evernessince - Friday, May 18, 2018 - link

    Correct although technically PS/2 could have lower latency in some situations. PS/2 keyboards and mice work based on interrupts while USB works by polling. In otherwards, when you press a key/click your mouse on a PS/2 device your request is immediately processed. USB on the otherhand waits until the device is next polled.

    TBH I've never seen a PS/2 vs USB latency test and I've personally never noticed a difference. Then again I haven't tested them strictly against each other on a high refresh rate monitor either.
  • voicequal - Friday, May 11, 2018 - link

    Those active PS/2 to USB adapters never worked very well. Lots of missed inputs or stuck keys. The passive adapters require that the peripheral device switch into a PS/2 mode, supported by some mice, but not all PS/2 in general. Also some KVMs work only with PS/2 if that is your thing.
  • HStewart - Friday, May 11, 2018 - link

    10 USB Ports in way more than I can remember on motherboards. My Supermicro Xeon didn't have that many ports on it.

    But one thing I see missing in motherboards today is Thunderbolt 3 - maybe it is notebook thing - and future generation will have it. What is really nice is you can hook up dual Display Ports on it - not sure how that works with graphics cards today.
  • DanNeely - Saturday, May 12, 2018 - link

    I think I've seen 1 or 2 boards with 12 out the back. 8/10 is around the normal upper limit though, partly for space reasons and partly due to chipset limits. For the last decade or so Intel's offered 14 USB ports on its high end southbridges with a gradually increasing number of the total supporting USB3; since most mobos have 2 or 3 on board headers for front panel ports or various misc internal uses (eg a few PSUs that connect to an internal 2.0 header to report stats) that leaves 8 or 10 total ports free for the back panel. Mobo vendors can get around this a bit by using onboard hubs or controllers (until recently this was the only way to get 10Gb ports), but to a large extent that's faking it until they can't make it. With a hub because you end up needing to know exactly what's going on inside the board if you need to connect multiple high speed devices at once to keep them from bottlenecking each other. PCIe controllers either end up with the same bottleneck problem, or if they have enough lanes to avoid it end up eating the equivalent number of SB ports instead.

    I've seen a few rumors that Intel's planning to integrate TB3 directly into the platform without needing a separate controller in the future. OTOH unless they add extra PCIe lanes to the CPU it's still probably going to be rare on desktop boards. TB3 is PCIe3 x4 equivalent, so a single connection on the southbridge could eat all of its bandwidth to the CPU. On most laptops to avoid that (and presumably to simplify the GPU out signalling) they use lanes from the CPU instead. On enthusiast desktops those 16 lanes are normally all used for the GPU though, and since PLXes PCIe switches are stupidly expensive now ($80 for a x16 to two x16 model) the only way to do that would be to limit the GPU to x8 instead of x16. In the real world that wouldn't matter much; but marketing is aimed at the clueless and a lot of them would freak.
  • Destoya - Wednesday, May 16, 2018 - link

    The Asus Crosshair VI Hero has the most USB ports of any boards I'm aware of. 2x USB 3.1, 8x USB 3.0, and 4x USB 2.0 on the back panel for a total of 14, though to be fair it only has a single LAN port and no display out. Somewhat ironically for the new Crosshair VII, they dropped two of the USB 2.0 ports for a PS/2 combo port.
  • DanNeely - Wednesday, May 16, 2018 - link

    AMD's got a slightly higher max USB port count than Intel, 2 3.1g2 ports, 10 3.1g1 (4CPU, 6 chipset), and 6 2.0 ports; but even there that board is using at least one 3rd party controller for the front panel 3.1g2 header (or they could be routing the chipset ports to that header and using the 3rd party controller on the back).

    swapping 2 of the 2.0 ports for a PS/2 seems reasonable to me; some people want them (ie those whose high end keyboard is more than a few years old and doesn't support N-key rollover via an extension to the original ~20 year old spec/driver); and the list of devices that have interference problems one 3.0 ports is very short so not many people need more than 1 or 2).

    OTOH other than cost reasons or wanting to keep space for their logo I don't see any reason they couldn't've added both; there seems to be enough back panel space for another stack of ports.
  • StevoLincolnite - Friday, May 11, 2018 - link

    You could add another 5+ USB ports on the back I reckon.
    I can't be the only one with half a dozen external HDD's?
  • sibuna - Saturday, June 2, 2018 - link

    if you are seriously using 1/2 a dozen external USB HDDs just build a NAS, it will serve you better
  • dgingeri - Saturday, May 12, 2018 - link

    1. the PS2 ports run off a PS2 to USB adapter on the board anyway, so they really aren't proper PS2 ports. The X390 chipset doesn't support any path for PS2 ports. So, there really is no advantage on that.

    2. Those PS2 ports could easily be replaced with 4 USB ports, and they could be run with 2X 2.0 and 2X 3.0. There are enough USB 3.0 ports available from the chipset to do that. USB keyboards run better directly off the root hub anyway. The problems most people have with them having lost input usually comes because the keyboard is being run off a hub. On top of that, I know from direct experience, most USB hubs have major reliability and operational problems. I do my best to avoid running anything through a hub these days because of the repeated and consistent problems I have had with them. I seem to find a good hub once in a while, only to have it die a couple months later. We NEED those ports on the back of those boards, and then some dumb engineer comes up with the idea to use 2 of those ports to make one USB-C header for some front panel port that is supported by only 1 case. My Maximus X Hero Wifi has only 8 ports, so I'm stuck with running my UPS, Nostromo, and mouse off a hub, which is not what I like.

    3. There are a LOT of people who go for such advantages in hardware who are just fantasizing over it making them a better player, when it simply won't help. So, stop with the idea that any more than a very bare few actually need PS2 ports.
  • DanNeely - Sunday, May 13, 2018 - link

    This is a Z370 board, and Z370 still has an LPC bus (a quasi-serial version of the ancient ISA bus) which has been the traditional location to mount the control chip for PS2 and other ultra-legacy IO ports. Without scouring the board images itself to figure out what controller is being used, I can't answer how it's being connected but the chipset does have the IO needed to support a non-USB PS2 port.

    And while the chipset does have theoretical additional USB3 lanes available, it doesn't have free HSIO ports to run them on without going into configuration hell where using feature X disables feature Y, Z370 has a total of 30 of them to split among USB3, SATA, and PCIe lanes from the chipset. The board breaks down as:

    1 Intel network
    1-4 AQC108 5GBe (maybe only 1-2, the Aquitania page doesn't differentiate between requirements for their 5 and 10Gb controllers)
    1 Realtek audio
    4+1+1=6 PCIe lanes
    4 Sata
    4+4=8 M.2 slots
    6+2 USB3.0 (back panel and front panel header)
    2 ASM USB3.1g2 controller

    That adds up to 31-34 already so at least one item is already being switched on/off depending on what else is in use.

    https://content.hwigroup.net/images/editorial/1920...

Log in

Don't have an account? Sign up now