CPU Rendering Tests

Rendering tests are a long-time favorite of reviewers and benchmarkers, as the code used by rendering packages is usually highly optimized to squeeze every little bit of performance out. Sometimes rendering programs end up being heavily memory dependent as well - when you have that many threads flying about with a ton of data, having low latency memory can be key to everything. Here we take a few of the usual rendering packages under Windows 10, as well as a few new interesting benchmarks.

All of our benchmark results can also be found in our benchmark engine, Bench.

Corona 1.3: link

Corona is a standalone package designed to assist software like 3ds Max and Maya with photorealism via ray tracing. It's simple - shoot rays, get pixels. OK, it's more complicated than that, but the benchmark renders a fixed scene six times and offers results in terms of time and rays per second. The official benchmark tables list user submitted results in terms of time, however I feel rays per second is a better metric (in general, scores where higher is better seem to be easier to explain anyway). Corona likes to pile on the threads, so the results end up being very staggered based on thread count.

Rendering: Corona Photorealism

Corona loves threads.

Blender 2.78: link

For a render that has been around for what seems like ages, Blender is still a highly popular tool. We managed to wrap up a standard workload into the February 5 nightly build of Blender and measure the time it takes to render the first frame of the scene. Being one of the bigger open source tools out there, it means both AMD and Intel work actively to help improve the codebase, for better or for worse on their own/each other's microarchitecture.

Rendering: Blender 2.78

Blender loves threads and memory bandwidth.

LuxMark v3.1: Link

As a synthetic, LuxMark might come across as somewhat arbitrary as a renderer, given that it's mainly used to test GPUs, but it does offer both an OpenCL and a standard C++ mode. In this instance, aside from seeing the comparison in each coding mode for cores and IPC, we also get to see the difference in performance moving from a C++ based code-stack to an OpenCL one with a CPU as the main host.

Rendering: LuxMark CPU C++Rendering: LuxMark CPU OpenCL

Like Blender, LuxMark is all about the thread count. Ray tracing is very nearly a textbook case for easy multi-threaded scaling. Though it's interesting just how close the 10-core Core i9-7900X gets in the CPU (C++) test despite a significant core count disadvantage, likely due to a combination of higher IPC and clockspeeds.

POV-Ray 3.7.1b4: link

Another regular benchmark in most suites, POV-Ray is another ray-tracer but has been around for many years. It just so happens that during the run up to AMD's Ryzen launch, the code base started to get active again with developers making changes to the code and pushing out updates. Our version and benchmarking started just before that was happening, but given time we will see where the POV-Ray code ends up and adjust in due course.

Rendering: POV-Ray 3.7

Similar to LuxMark, POV-Ray also wins on account of threads.

Cinebench R15: link

The latest version of CineBench has also become one of those 'used everywhere' benchmarks, particularly as an indicator of single thread performance. High IPC and high frequency gives performance in ST, whereas having good scaling and many cores is where the MT test wins out.

Rendering: CineBench 15 MultiThreaded

Rendering: CineBench 15 SingleThreaded

Intel recently announced that its new 18-core chip scores 3200 on Cinebench R15. That would be an extra 6.7% performance over the Threadripper 1950X for 2x the cost.

Benchmarking Performance: CPU System Tests Benchmarking Performance: CPU Web Tests
Comments Locked

347 Comments

View All Comments

  • lefty2 - Thursday, August 10, 2017 - link

    except that they haven't
  • Dr. Swag - Thursday, August 10, 2017 - link

    How so? You have the performance numbers, and they gave you power draw numbers...
  • bongey - Thursday, August 10, 2017 - link

    Just do a avx512 benchmark and Intel will jump over 300watts , 400watts(overclocked) only from the cpu. (prime95 avx512 benchmark).See der8auer's video "The X299 VRM Disaster (en)"
  • DanNeely - Thursday, August 10, 2017 - link

    The Chromium build time results are interesting. Anandtech's results have the 1950X only getting 3/4ths of the 7900X's performance. Arstechnica's getting almost equal results on both CPUs, but at 16 compiles per day vs 24 or 32 is seeing significantly worse numbers all around.

    I'm wondering what's different between the two compile benchmarks to see such a large spread.
  • cknobman - Thursday, August 10, 2017 - link

    I think it has a lot to do with the RAM used by Anandtech vs Arstechnica .
    For all the regular benchmarking Anand used DDR4 2400, only the DDR 3200 was used in some overcloking.
    Arstechnica used DDR4 3200 for all benchmarking.
    Everyone already knows how faster DDR4 memory helps the Zen architecture.
  • DanNeely - Thursday, August 10, 2017 - link

    If ram was the determining factor, Ars should be seeing faster build times though not slower ones.
  • carewolf - Thursday, August 10, 2017 - link

    Anandtech must have misconfigured something. Building chromium is scales practically linearly. You can move jobs all the way across a slow network and compile on another machine and you still get linear speed-ups with more added cores.
  • Ian Cutress - Thursday, August 10, 2017 - link

    We're using a late March v56 code base with MSVC.
    Ars is using a newer v62 code base with clang-cl and VC++ linking

    We locked in our versions when we started testing Windows 10 a few months ago.
  • supdawgwtfd - Friday, August 11, 2017 - link

    Maybe drop it then as it is not at all usefull info.
  • Johan Steyn - Thursday, August 10, 2017 - link

    I refrained from posting on the previous article, but now I'm quite sure Anand is being paid by Intel. It is not that I argue against the benchmarks, but how it is presented. I was even under the impression that this was an Intel review.

    The previous article was stated as "Introducing Intel's Desktop Processor" Huge marketing research is done on how to market products. By just stating one thing first or in a different way, quite different messages can be conveyed without lying outright.

    By making the "Most Powerful, Most Scalable" Bold, that is what the readers read first, then they read "Desktop Processor" without even reading that is is Intel's. This is how marketing works, so Anand used slanted journalism to favour Intel, yet most people will just not realise it eat it up.

    In this review there are so many slanted journalism problems, it is just sad. If you want, just compare it to other sites reviews. They just omit certain tests and list others at which Intel excel.

    I have lost my respect for Anandtech with these last two articles of them, and I have followed Anandtech since its inception. Sad to see that you are also now bought by Intel, even though I suspected this before. Congratulations for making this so clear!!!

Log in

Don't have an account? Sign up now