Intel's Optimized Turbo Profiles

Also new to Skylake-SP, Intel has also further enhanced turbo boosting.

There are also some security and virtualization enhancements (MBE, PPK, MPX) , but these are beyond the scope this article as we don't test them. 

Summing It All Up: How Skylake-SP and Zen Compare

The table below shows you the differences in a nutshell.

  AMD EPYC 7000
 
Intel Skylake-SP Intel Broadwell-EP
 
Package & Dies Four dies in one MCM Monolithic  Monolithic
Die size 4x 195 mm² 677 mm² 456 mm²
On-Chip Topology Infinity Fabric
(1-Hop Max)
Mesh Dual Ring
Socket configuration 1-2S 1-8S ("Platinum") 1-2S
Interconnect (Max.)
Bandwidth (*)(Max.)
4x16 (64) PCIe lanes
4x 37.9 GB/s
3x UPI 20 lanes
3x 41.6 GB/s
2x QPI 20 lanes
2x 38.4 GB/s
TDP 120-180W 70-205W 55-145W
8-32 4-28 4-22
LLC (max.) 64MB (8x8 MB) 38.5 MB 55 MB
Max. Memory 2 TB 1.5 TB 1.5 TB
Memory subsystem
Fastest sup. DRAM
8 channels
DDR4-2666
6 channels
DDR4-2666
4 channels
DDR4-2400
PCIe Per CPU in a 2P 64 PCIe (available) 48 PCIe 3.0 40 PCIe 3.0

(*) total bandwidth (bidirectional)

At a high level, I would argue that Intel has the most advanced multi-core topology, as they're capable of integrating up to 28 cores in a mesh. The mesh topology will allow Intel to add more cores in future generations while scaling consistently in most applications. The last level cache has a decent latency and can accommodate applications with a massive memory footprint. The latency difference between accessing a local L3-cache chunk and one further away is negligible on average, allowing the L3-cache to be a central storage for fast data synchronization between the L2-caches. However, the highest performing Xeons are huge, and thus expensive to manufacture. 

AMD's MCM approach is much cheaper to manufacture. Peak memory bandwidth and capacity is quite a bit higher with 4 dies and 2 memory channels per die. However, there is no central last level cache that can perform low latency data coordination between the L2-caches of the different cores (except inside one CCX). The eight 8 MB L3-caches acts like - relatively low latency - spill over caches for the 32 L2-caches on one chip.  

Intel's New On-Chip Topology: A Mesh Xeon Skylake-SP SKUs
Comments Locked

219 Comments

View All Comments

  • alpha754293 - Tuesday, July 11, 2017 - link

    Pity that OpenFOAM failed to run on Ubuntu 16.04.2 LTS. I would have been very interested in those results.
  • farmergann - Tuesday, July 11, 2017 - link

    Are you trying to hide the fact that AMD's performance per watt absolutely dominates intel's, or have you simply overlooked one of, if not the, single most important aspects of server processors?
  • Ryan Smith - Tuesday, July 11, 2017 - link

    Neither. We just had very little time to look at power consumption. It's also the metric we're the least confident in right now, as we'd like to have a better understanding of the quirks of the platform (which again takes more time).
  • Carl Bicknell - Wednesday, July 12, 2017 - link

    Ryan / Ian,
    Just to let you know there are better chess benchmarks than the one you've chosen. Stockfish is an example of a newer program which better uses modern CPU architecture.
  • NixZero - Tuesday, July 11, 2017 - link

    "AMD's MCM approach is much cheaper to manufacture. Peak memory bandwidth and capacity is quite a bit higher with 4 dies and 2 memory channels per die. However, there is no central last level cache that can perform low latency data coordination between the L2-caches of the different cores (except inside one CCX). The eight 8 MB L3-caches acts like - relatively low latency - spill over caches for the 32 L2-caches on one chip. "
    isnt skylake-x's l3 a victim cache too? and divided at 1.3mb for each core, not a monolytic one?
  • Ian Cutress - Tuesday, July 11, 2017 - link

    That's what a 'spill-over' cache is - it accepts evicted cache lines.
  • NixZero - Wednesday, July 12, 2017 - link

    so why its put as an advantage for intel cache, which is spill over too?
  • JonathanWoodruff - Wednesday, July 12, 2017 - link

    Since the Intel one is all on one die, a miss to a "slice" of cache can be filled without DRAM-like latencies from another slice. Since AMD has it's last level caches spread across dies, going to another cache looks to be equivalent latency-wise to going to DRAM. It wouldn't necessarily have to be quite that bad, and I would expect some improvement here for Zen2.
  • Martin_Schou - Tuesday, July 11, 2017 - link

    This has to be wrong:

    CPU Two EPYC 7601 (2.2 GHz, 32c, 8x8MB L3, 180W)
    RAM 512 GB (12x32 GB) Samsung DDR4-2666 @2400

    12 x 32 GB is 384 GB, and 12 sticks doesn't fit nicely into 8 channels. In all likelihood that's supposed to be 16x32 GB, as we see in the E52690
  • Dr.Neale - Tuesday, July 11, 2017 - link

    I find myself puzzled by the curious omission in this article of a key aspect of Server architecture: Data Security.

    AMD has a LOT; Intel, not so much.

    I would think this aspect of Server "Performance" would be a major consideration in choosing which company's Architecture to deploy in a Secure Server scenario. Especially in light of Recent Revelations fuelling Hacking Headlines in the news, and Dominating Discussions on various social media websites.

    How much is Data Security worth?

    A topic of EPYC consequence!

Log in

Don't have an account? Sign up now