Benchmark Configuration and Methodology

For our testing we installed 64-bit Ubuntu 15.04 Linux (Kernel version 3.19.0) so that we were able to use GCC 4.9.2, which has better support for the POWER8. We tried to keep the colors inside our benchmark graphs consistent: dark blue is IBM, light blue is the latest Intel Xeon generation (Haswell, E5 v3), and gray was reserved for older Intel systems.

Meanwhile on a quick aside, we should point out that IBM's servers also support PowerVM and KVM virtualization, however we decided not to make use of it to keep the complexity of the tests under control. As we explained in the introduction, porting and tuning the usual benchmarks was quite a challenge, and virtualization makes benchmarking a lot more complex. Testing virtualized workloads was thus beyond the scope of this article.

All tests have been done with the help of Kirth and Wannes of the Sizing Servers Lab.

IBM S822L (2U Chassis)

CPU Two IBM POWER8 3.425 GHz 10 cores
RAM 128GB (8x16GB) IBM CDIMMs
Internal Disks 2x 300GB 15K RPM SAS Disks (boot)
1x Intel DC P3700 400 GB (Data and benchmarks)
Motherboard No idea
BIOS version OPAL v3
PSU Dual Emerson 1400W

Intel's Xeon E5 Server – "Wildcat Pass" (2U Chassis)

CPU Two Intel Xeon processor E5-2699 v3 (2.3GHz, 18c, 45MB L3, 145W)
Two Intel Xeon processor E5-2695 v3 (2.3 GHz, 14c, 35MB L3, 120W)
Two Intel Xeon processor E5-2667 v3 (3.2 GHz, 8c, 20MB L3, 135W)
Two Intel Xeon processor E5-2650L v3 (1.8GHz, 12c, 30MB L3, 65W)
RAM 128GB (8x16GB) Samsung M393A2G40DB0 (RDIMM)
Internal Disks 2x Intel MLC SSD710 200GB (boot)
1x Intel DC P3700 400 GB (Data and benchmarks)
Motherboard Intel S2600WTT
BIOS version version 1.01
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

All C-states are enabled in both the BIOS.

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) powerline. The room temperature is monitored and kept at 23°C by our Airwell CRACs.

The L4-cache and Memory Subsystem "Per Core" Integer Performance: 7-Zip
Comments Locked

146 Comments

View All Comments

  • Kevin G - Saturday, November 7, 2015 - link

    If all you do is just mount the network volume to use the data, then likely nothing at all. While binaries do have to be modified, the file systems themselves are written to store data in a single consistent manner. If you're wondering more if there would be some overhead in translating from LE to BE to work in memory, conceptually the answer is yes but I'd predict it be rather small and dwarfed by the time to transfer data over a network. I'd be curious to see the results.

    Ultiamtely I'd be more concerned with kernel modules for various peripherals when switching between LE and BE versions. Considering that POWER has been BE for a few generations and you did your initial testing using LE, availability shouldn't be an issue. You've been using the version which should have had the most problems in this regard.
  • spikebike - Friday, November 6, 2015 - link

    So basically power is somewhat competitive with intel's WORST price/perf chips which also happen to have the worst memory bandwidth/CPU. Seems nowhere close for the more reasonable $400-$650 xeons like the D-1520/1540 or the E5-2620 and E5-2630. Sure IBM has better memory bandwidth than the worst intels, but if you want more memory bandwidth per $ or per core then get the E5-2620.
  • JohanAnandtech - Saturday, November 7, 2015 - link

    It is definitely not an alternative for applications where performance/watt is important. As you mentioned, Intel offers a much better range of SKUs . But for transactional databases and data mining (traditional or unstructured), I see the POWER8 as very potent challenger. When you are handling a few hundreds of gigabytes of data, you want your memory to be reliable. Intel will then steer you to the E7 range, and that is where the POWER8 can make a difference: filling the niche between E5 and E7.
  • nils_ - Wednesday, November 11, 2015 - link

    Especially if you're running software that doesn't easily scale out very well these are very competitive. And nowadays even MySQL will scale-up nicely to many, many cores.
  • Gigaplex - Friday, November 6, 2015 - link

    "Less important, but still significant is the fact that IBM uses SAS disks, which increase the cost of the storage system, especially if you want lots of them."

    The Dell servers I've used had SAS controllers, and every SAS controller I've dealt with supported using SATA drives. I'm pretty sure SATA compatibility is in the SAS specification. In fact, the Dell R730 quoted in this review supports SAS drives. There shouldn't be anything stopping you from using the same drives in both servers.
  • JohanAnandtech - Saturday, November 7, 2015 - link

    You are absolutely right about SATA drives being compatible with a SAS controller. However, afaik IBM gives you only the choice between their own rather expensive SAS drives and SSDs. And maybe I have looked over it, but in general DELL let you only chose between SATA and SSDs. And this has been the trend for a while: SATA if you want to keep costs low, SSDs for everything else.
  • TomWomack - Sunday, November 8, 2015 - link

    And mounting a storage server made out of commodity hardware over a couple of lanes of 10Gbit Ethernet if you don't want to pay the exotic-hardware-supplier's markup on disc.
  • Gunbuster - Friday, November 6, 2015 - link

    SAP and IBM AIX servers... I guess if you want to blow out your entire IT budget in once easy decision...
  • Jake Hamby - Friday, November 6, 2015 - link

    I forgot to mention: VMX is better known as AltiVec (it's also called "Velocity Engine" by Apple). It's a very nice SIMD extension that was supported by Apple's G4 (Motorola/Freescale 7400/7450) and G5 (IBM PPC 970) Macs, as well as the PPC game consoles.

    It would be interesting to compare the Linux VMX crypto acceleration to code written to use the newer native AES & other instructions. In x86 terms, it'd be like SSE-optimized AES vs. the AES-NI instructions.
  • Oxford Guy - Saturday, November 7, 2015 - link

    I had a dual 450 MHz G4 system and AltiVec was quite amazing in iTunes when doing encoding. Between the second processor and the AltiVec putting things into ALAC was very fast (in comparison with other machines at the time like the G3 and the AMD machines I had).

Log in

Don't have an account? Sign up now