Grand Theft Auto V

The final game in our review of the R9 Fury X is our most recent addition, Grand Theft Auto V. The latest edition of Rockstar’s venerable series of open world action games, Grand Theft Auto V was originally released to the last-gen consoles back in 2013. However thanks to a rather significant facelift for the current-gen consoles and PCs, along with the ability to greatly turn up rendering distances and add other features like MSAA and more realistic shadows, the end result is a game that is still among the most stressful of our benchmarks when all of its features are turned up. Furthermore, in a move rather uncharacteristic of most open world action games, Grand Theft Auto also includes a very comprehensive benchmark mode, giving us a great chance to look into the performance of an open world action game.

On a quick note about settings, as Grand Theft Auto V doesn't have pre-defined settings tiers, I want to quickly note what settings we're using. For "Very High" quality we have all of the primary graphics settings turned up to their highest setting, with the exception of grass, which is at its own very high setting. Meanwhile 4x MSAA is enabled for direct views and reflections. This setting also involves turning on some of the advanced redering features - the game's long shadows, high resolution shadows, and high definition flight streaming - but not increasing the view distance any further.

Otherwise for "High" quality we take the same basic settings but turn off all MSAA, which significantly reduces the GPU rendering and VRAM requirements.

Grand Theft Auto V - 3840x2160 - Very High Quality

Grand Theft Auto V - 3840x2160 - High Quality

Grand Theft Auto V - 2560x1440 - Very High Quality

Closing out our gaming benchmarks, the R9 Fury is once again in the lead, besting the GTX 980 by as much as 15%. However GTA V also serves as a reminder that the R9 Fury doesn’t have quite enough power to game at 4K without compromises. And if we do shift back to 1440p, a more comfortable resolution for this card, AMD’s lead is down to just 5%. At that point the R9 Fury isn’t quite covering its price advantage.

Meanwhile compared to the R9 Fury X, we close out roughly where we started. The R9 Fury trails the more powerful R9 Fury X by 5-7% depending on the resolution, a difference that has more to do with GPU clockspeeds than the cut-down CU count. Overall the gap between the two cards has been remarkably consistent and surprisingly narrow.

Grand Theft Auto V - 99th Percentile Framerate - 3840x2160 - Very High Quality

Grand Theft Auto V - 99th Percentile Framerate - 3840x2160 - High Quality

Grand Theft Auto V - 99th Percentile Framerate - 2560x1440 - Very High Quality

99th percentile framerates however are simply not in AMD’s favor here. Despite AMD’s driver optimizations and the fact that the GTX 980 only has 4GB of VRAM, the R9 Fury X could not pull ahead of the GTX 980, so the R9 Fury understandably fares worse. Even at 1440p the R9 Fury cards can’t quite muster 30fps, though in all fairness even the GTX 980 falls just short of this mark as well.

GRID Autosport Synthetics
Comments Locked

288 Comments

View All Comments

  • Midwayman - Friday, July 10, 2015 - link

    I'd love to see these two go at it again once dx12 games start showing up.
  • Mugur - Saturday, July 11, 2015 - link

    Bingo... :-). I bet the whole Fury lineup will gain a lot with DX12, especially the X2 part (4 + 4 GB won't equal 4 as in current CF). The are clearly CPU limited at this point.
  • squngy - Saturday, July 11, 2015 - link

    I don't know...

    Getting dx12 performance at the cost of dx11 performance sounds like a stupid idea this soon before dx12 games even come out.

    By the time a good amount of dx12 games come out there will probably be new graphics cards available.
  • thomascheng - Saturday, July 11, 2015 - link

    They will probably circle around and optimize things for 1080p and dx11, once dx12 and 4k is at a good place.
  • akamateau - Tuesday, July 14, 2015 - link

    DX12 games are out now. DX12 does not degrade DX11 performance. In fact Radeon 290x is 33% faster than 980 Ti in DX12. Fury X just CRUSHES ALL nVIDIA silicon with DX12 and there is a reason for it.

    Dx11 can ONLY feed data to the GPU serially and sequencially. Dx12 can feed data Asynchronously, the CPU send the data down the shader pipeline WHEN it is processed. Only AMD has this IP.
  • @DoUL - Sunday, July 19, 2015 - link

    Kindly provide link to a single DX12 game that is "out now".

    In every single review of the GTX 980 Ti there is this slide of DX12 feature set that the GTX 980 Ti supports and in that slide in all the reviews "Async Compute" is right there setting in the open, so I'm not really sure what do you mean by "Only AMD has this IP"!

    I'd strongly recommend that you hold your horses till DX12 games starts to roll out, and even then, don't forget the rocky start of DX11 titles!

    Regarding the comparison you're referring to, that guy is known for his obsession with mathematical calculations and synthetic benchmarking, given the differences between real-world applications and numbers based on mathematical calculations, you shouldn't be using/taking his numbers as a factual baseline for what to come.
  • @DoUL - Sunday, July 19, 2015 - link

    My Comment was intended as a reply to @akanateau
  • OldSchoolKiller1977 - Sunday, July 26, 2015 - link

    You are an idiotic person, wishful think and dreams don't make you correct. As stated please provide a link to these so called DX12 games and your wonderful "Fury X just CRUCHES ALL NVidia" statement.
  • Michael Bay - Sunday, July 12, 2015 - link

    As long as there is separate RAM in PCs, memory argument is moot, as contents are still copied and executed on in two places.
  • akamateau - Tuesday, July 14, 2015 - link

    Negative. Once Graphic data is processed and sent to the shaders it next goes to VRAM or video ram.

    System ram is what the CPU uses to process object draws. Once the objects are in the GPU pipes system ram is irrelevant.

    IN fact that is one of AMD's stacked memory patents. AMD will be putting HBM on APU's to not only act as CPU cache but HBM video ram as well. They have patents for programmable HBM using FPGA's and reconfigurable cache memory HBM as well.

    Stacked memory HBM can also be on the cpu package as a replacement for system ram. Can you imagine how your system would fly with 8-16gb of HBM instead of system ram?

Log in

Don't have an account? Sign up now