CPU Real World Performance

A small note on real world testing against synthetic testing – due to the way that DRAM affects a system, there can be a large disconnect between what we can observe in synthetic tests against real world testing. Synthetic tests are designed to exploit various feature XYZ, usually in an unrealistic scenario, such as pure memory read speeds or bandwidth numbers. While these are good for exploring the peak potential of a system, they often to not translate as well as CPU speed does if we invoke some common prosumer real world task. So while spending 10x on memory might show a large improvement in peak bandwidth numbers, users will have to weigh up the real world benefits in order to find the day-to-day difference when going for expensive hardware. Typically a limiting factor might be something else in the system, such as the size of a cache, so with all the will in the world a faster read speed won’t make much difference. As a result, we tend to stick to real world tests for almost all of our testing (with a couple of minor suggestions). Our benchmarks are either derived from areas such as transcoding a film or come from a regular software format such as molecular dynamics running a consistent scene.

Handbrake v0.9.9

For HandBrake, we take two videos (a 2h20 640x266 DVD rip and a 10min double UHD 3840x4320 animation short) and convert them to x264 format in an MP4 container.  Results are given in terms of the frames per second processed, and HandBrake uses as many threads as possible.

HandBrake v0.9.9 LQ Film

HandBrake v0.9.9 HQ Film

The low quality conversion is more reliant on CPU cycles available, while the high resolution conversion seems to have a very slight ~3% benefit moving up to DDR4-3000 memory.

WinRAR 5.01

Our WinRAR test from 2013 is updated to the latest version of WinRAR at the start of 2014. We compress a set of 2867 files across 320 folders totaling 1.52 GB in size – 95% of these files are small typical website files, and the rest (90% of the size) are small 30 second 720p videos.

WinRAR 5.01

The biggest difference showed a 5% gain over DDR4-2133 C15, although this seemed at random.

FastStone Image Viewer 4.9

FastStone Image Viewer is a free piece of software I have been using for quite a few years now. It allows quick viewing of flat images, as well as resizing, changing color depth, adding simple text or simple filters. It also has a bulk image conversion tool, which we use here. The software currently operates only in single-thread mode, which should change in later versions of the software. For this test, we convert a series of 170 files, of various resolutions, dimensions and types (of a total size of 163MB), all to the .gif format of 640x480 dimensions. Results shown are in seconds, lower is better.

FastStone Image Viewer 4.9

No difference between the memory speeds in FastStone.

x264 HD 3.0 Benchmark

The x264 HD Benchmark uses a common HD encoding tool to process an HD MPEG2 source at 1280x720 at 3963 Kbps. This test represents a standardized result which can be compared across other reviews, and is dependent on both CPU power and memory speed. The benchmark performs a 2-pass encode, and the results shown are the average frame rate of each pass performed four times. Higher is better this time around.

x264 HD 3.0, 1st Pass

x264 HD 3.0, 2nd Pass

The faster memory showed a 2.5% gain on the first pass, but less than a 1% gain in the second pass.

7-Zip 9.2

As an open source compression tool, 7-Zip is a popular tool for making sets of files easier to handle and transfer. The software offers up its own benchmark, to which we report the result.

7-Zip 9.2

At most a 2% gain was shown by 3000+ memory.

Mozilla Kraken 1.1

One of the more popular web benchmarks that stresses various codes, we run this benchmark in Chrome 35.

Mozilla Kraken 1.1

Kraken seemed to prefer the fast 1.2V memory, giving a 4.8% gain at DDR4-2800 C16, although this did not translate into the faster memory.

WebXPRT

A more in-depth web test featuring stock price rendering, image manipulation and face recognition algorithms, also run in Chrome 35.

WebXPRT

The DDR4-3200 gave an 11% gain over the base JEDEC memory, although this seemed to be more of a step than a slow rise.

Enabling XMP Memory Scaling on Haswell: Professional Performance
Comments Locked

120 Comments

View All Comments

  • wyewye - Sunday, February 8, 2015 - link

    Extremely weak review.

    Ian, is this your first memory review?
    Everyone knows in the real world apps the difference is small. Whats the point to show a gazilion of charts with 1% differences. You had way more random noise from the tests errors, those numbers are meaningless.
    For memory, the syntetic tests is the only way.

    Thumbs down, bring back Anand for decent reviews.
  • wyewye - Sunday, February 8, 2015 - link

    @Ian
    ProTip: when the differences are small and you get obviously wrong results like 2800@cl14 slower than 2133@cl16, run 10 or 20 tests, eliminate spikes and compute the median.
  • wyewye - Sunday, February 8, 2015 - link

    Ian stop being sloppy and do a better job next time!
  • Oxford Guy - Sunday, February 8, 2015 - link

    "Moving from a standard DDR3-2133 C11 kit to DDR4-2133 C15, just by looking at the numbers, feels like a downgrade despite what the rest of the system is."

    Sure... let's just ignore the C10 and C9 DDR3 that's available to make DDR4 look better?
  • eanazag - Monday, February 9, 2015 - link

    Why not post some RAM disk numbers?

    What I saw in the article is that the cheapest, high capacity made the most sense for my dollar.
  • SFP1977 - Tuesday, February 10, 2015 - link

    Am I missing something, or how did they over come the fact that their 2011 test processor has 4 memory lanes while that 1150 processor has only 2??
  • deanp0219 - Wednesday, February 11, 2015 - link

    Great article, but in fairness, you're comparing the first run of DDR4 modules against very well developed and evolved DDR3 modules. When DDR3 was first released, I'll bet some of the high-end DDR2 modules available at the time matched up with them fairly well. We'll have to see where DDR4 technology goes from here. Again, great read though. Totally not a reflection on the article -- nothing you can do about the state of the tech. Made me feel better about my DDR3-2133 machine!
  • MattMe - Friday, July 10, 2015 - link

    Am I right in thinking that the benefits of DDR4 outside of power consumption could well be in scenarios where integrated graphics are being utilised?

    The additional channels and clock speeds are more likely to have an effect there than an external GPU, I would assume. But we're still yet to see any DDR4L in the consumer market (as far as I'm aware), it's most beneficial area.

    Seeing some benchmarks including integrated graphics would be very interesting, especially in smaller, lower powered systems like a NUC or similar.
  • LorneK - Monday, October 5, 2015 - link

    My gripe with Cinebench as a "professional" test is that aside from tracing rays, it in no way resembles the kind of rendering that an actual professional would be doing.

    There's hardly any geometry, hardly any textures, no displacement, no advanced lighting models, etc.

    So yeah, DDR4 makes barely any impact in Cinebench, but I have to wonder how much of that is due to Cinebench requiring almost nothing from RAM in general.

    Someone needs to come along and make a truly useful rendering benchmark. A complex scene with millions of polygons, gigs of textures, global illumination, glossy reflections, the works basically.

    Only then can we actually know what various aspects of a machine's hardware are affecting.

    An amazing SSD would reduce initial scene spool up time. Fast single thread performance would also increase render start times. Beefy RAM configs would be better at feeding the CPUs the multiple GBs needed to do the job. And the render tiles would take long enough to complete that a 72 thread Xeon box isn't wasting half its resources simply moving from tile to tile and rendering microscopic regions.
  • Zerung - Tuesday, February 9, 2016 - link

    My Asus Mobo notes the following:
    'Due to Intel® chipset limitation, DDR4 2133 MHz and higher memory modules on XMP mode will run at the maximum transfer rate of DDR4 2133 Mhz'. Does this mean that running the DDR4 3400 CL16 may not give me the latency below 10?
    Thanks

Log in

Don't have an account? Sign up now