The first SPECIntRate 2006 estimates were published by "CPU meister" Andreas Stiller. If we combine his findings with what we know and what is available at, we get the benchmark graph below.


Intel's own published SPECintrate scores are up to 20% higher, so at first sight the ARM competition is not there yet. However, we prefer to show the "lower numbers" as they have not been benchmarked with masterfully set ICC configuration settings.

The most aggressive architecture, the X-Gene, is quite a bit slower than the Xeon E3-1230L. The latter needs about 40W per node (SoC + chipset), while an X-Gene node would need almost 60W. AppliedMicro really needs the 28nm 2.8GHz X-Gene 2, which apparently can offer a 50% better performance per watt increase in SPECintrate 2006.

However, we have shown you that while SPECintrate 2006 is the standard often used, popular with most CPU designers, analysts and academic researchers, it is a pretty bad predictor of server performance. We should not discount the chances of the server ARM SoCs too quickly. A mediocre SPECint SoC can still perform well in server applications.

Overview Are Economies of Scale and Volume Enough?


View All Comments

  • jjj - Tuesday, December 16, 2014 - link

    If you look at phones and tabs ,we might be getting some rather big custom cores in 2015 and 2016. Apple and Nvidia already have that, ofc much smaller than Intel's core when adjusting for process (actually that's an assumption when it comes to Denver since don't think we've seen any die shots).
    Intel at the same time in consumer is pushing for more non-CPU/GPU compute units and low power and they might face a tough question about core size and even process (if they target low clocks, low power , or the opposite).Got to wonder if at some point they'll have to go for a big core just for server.Would make things even more interesting.
    Might not matter but Apple kinda has the perf for an ARM Macbook Air if they go quad. Not something worth doing for such low volume but doable when they go quad on all ipads or sooner if they launch a bigger ipad. Could be a trigger for others pushing more ARM based Chromebooks and beyond. That would set the stage for even bigger ARM cores.
    Also got the feeling Nintendo will go ARM in 2016 and not many reasons for Sony and M$ not to go that way if they ever make a new gen- just another market for bigger ARM cores, any significant revenue helps with dev costs so it matters.
  • CajunArson - Tuesday, December 16, 2014 - link

    1. The Core-m is widely derided as not being fast enough for the MacBook Air.
    2. The Core-m is easily twice as fast as the A8X in benchmarks that count... even Anandtech's own benchmarks show that. Furthermore, when you step away from web browsers and get to use the advanced features of the Core-m like AVX, that advantage jumps to about 8x faster in compute-heavy benchmarks like Linpack.
    3. Even the mythical A9 coming in 2015 is expected to have roughly a 20% performance boost over the A8x.
    4. Any real computer using an ARM chip would have to have a translation layer just like the old Rosetta to run the huge library of x86 software out there. Rosetta sort of worked because the Core 2 chips from Intel were *massively* faster than the PowerPC parts they replaced. Now you expect to run the translation overhead on an A9 chip that is slower -- by a large margin -- than the Core-m parts you've already derided as not being good enough?

    Yeah, I'm not holding my breath.
  • fjdulles - Tuesday, December 16, 2014 - link

    You may be right, but remember that ARM chips using the same power budget as Intel core i* will no doubt be clocked higher and perform that much better. Not sure if that will be competitive but it would be interesting to see. Reply
  • wallysb01 - Tuesday, December 16, 2014 - link

    Only if you want a glorified tablet as a laptop. The software most people use in real work on laptops/desktops is not going to be ported over to ARM at an speed, even if ARMs could do that work reasonably well. Reply
  • Kevin G - Wednesday, December 17, 2014 - link

    I'm under the impression that a good chunk has already been ported. MS Office for example is native ARM on Windows RT. Various Linux distributions have ARM ports completed with ARM based office and desktop software. The main thing missing are some big commercial applications like Photoshop etc.

    The server side of thing is similar with Linux and open software ports. MS is weirdly absent but I suspect that an ARM based version of Windows 2012/2014 is waiting of major hardware to be released. Much of the Windows base is already ported over to ARM due to Windows RT.
  • Kevin G - Wednesday, December 17, 2014 - link

    Indeed. Performance of ARM platforms once power constraints have been removed is a very open question. So far all the core designs in products have been used in mobile where SoC power consumption is less than 5 W. What a 100 W product would look is an open and very interesting question. Reply
  • Ratman6161 - Wednesday, December 17, 2014 - link

    If they "use the same power budget as an Intel core i*" then what would be the point? Reply
  • jjj - Tuesday, December 16, 2014 - link

    Ok you are focusing on the wrong thing but lets do that anyway.
    I have never claimed that Apple's own SoC would beat Intel's current SoCs, just that the perf would be enough if they go quad and obviously higher clocks.
    When you talk Core M you should remember that the price at launch was $281 so it's not good enough for anything.
    Anyway how about you compare a possible Apple SoC with a MacBook Air from 2011, lets face it the Air is a crap machine anyway , not much perf and TN panel for w/e ridiculous price it costs now and it's users are certainly not doing any heavy lifting with it.
    At the same time Apple's own 15- 20$ SoC would allow them a much cheaper machine and a presence in a price segment they never competed in, adding at least 5B of revenue per year (including cannibalization) and a share gain in PC of 2-3%.
    But then again the point was that there are a bunch of trends that could favor bigger ARM cores.
  • Morawka - Wednesday, December 17, 2014 - link

    it might cost them $20 for the A8X in fab cost, but the R&D for that chip is in the 10's of millions. Factor that in, to however many they ship, and it adds at least another $20 per chip Reply
  • jospoortvliet - Wednesday, December 17, 2014 - link

    Even more obvious then that this would save them money by spreading out the fixed costs over more devices... Reply

Log in

Don't have an account? Sign up now