WiFi

The iPad Air moves to a 2-stream dual-band 802.11n solution, a sort of compromise between where the iPad was with its previous single-stream implementation and some of the newer devices shipping with 802.11ac. Moving to two spatial streams obviously helps improve performance tremendously. Peak performance on 5GHz 802.11n, assuming an equally capable AP, went as high as 180Mbps in my tests. I was able to average 168Mbps during our standard UDP WiFi test on 5GHz.

iPerf WiFi Performance - 5GHz 802.11n

Cellular

Apple continues to use Qualcomm’s MDM9615 modem in the iPad Air, the big difference this round is there’s only a single SKU (A1475) for the cellular model covering a total of 34 countries across the Americas and EMEA. The LTE iPad Air supports a total of 14 LTE bands (1,2,3,4,5,7,8,13,17,18,19,20,25 and 26). In his usual awesome fashion, Brian speculated that the increased number of supported LTE bands was partially a function of moving to Qualcomm’s WTR1605L transceiver.

iPad Cellular Speeds
Property iPhone 3G/3GS/iPad 1 3G iPhone 4 / iPad 2 (GSM/UMTS) iPhone 4 / iPad 2 (CDMA) iPad 3 iPad 4/iPad Mini iPad Air/iPad Mini w/Retina
Baseband Infineon X-Gold 608 Infineon X-Gold 618 Qualcomm MDM6600 Qualcomm MDM9600 Qualcomm MDM9615 w/RTR8600 Qualcomm MDM9615
w/WTR1605L
Max 3GPP Release Feature Release 5 Release 6 Release 7 Release 9 Release 9 Release 9
HSDPA Category Cat.8 - 7.2 Mbps Cat.8 - 7.2 Mbps N/A Cat. 24 - 42 Mbps Cat. 24 - 42 Mbps Cat. 24 - 42 Mbps
HSUPA Category None - 384 Kbps WCDMA only Cat.6 - 5.76 Mbps N/A Cat.6 - 5.76 Mbps Cat.6 - 5.76 Mbps Cat.6 - 5.76 Mbps
EVDO N/A N/A 1x/EVDO Rev.A 1x/EVDO Rev.A 1x/EVDO Rev.A 1x/EVDO Rev.A
LTE N/A N/A N/A 100/50 UE Cat. 3 100/50 UE Cat. 3 100/50 UE Cat. 3

From a spec and performance standpoint, the LTE modem in the iPad Air is no different than what was in the 4th generation iPad. Consistent cellular connectivity options remains one of the staples of the iPad lineup. Although WiFi tablets still tend to be the more popular, it’s hard to argue with the productivity benefit to having LTE on a tablet. Being able to just reach for the iPad Air and know it’ll have connectivity regardless of where I am, without having to search for and log in to a WiFi network, is tremendously convenient.

Just as before, there’s no contract commitment necessary to buy an LTE iPad Air. You can manage your account directly on the device itself. Furthermore, at least in the US, the LTE iPad Air isn’t locked to any one network operator. You specify what provider you’d like to go with at the time of purchase, but afterwards you’re able to swap in any other activated nano SIM from a supported network operator. You could feasibly start out with a Sprint iPad Air and later switch to a Verizon, T-Mobile or AT&T SIM and continue using the device. The flexibility offered by a single SKU with support for a ton of bands is pretty awesome.

 

Camera Battery Life
POST A COMMENT

444 Comments

View All Comments

  • sna2 - Wednesday, October 30, 2013 - link

    wrong.

    Most flash sticks are eMMC and they operate at 100MB/s to 200MB/s which needs usb3.
    Reply
  • Kristian Vättö - Wednesday, October 30, 2013 - link

    Read speeds can easily exceed 100MB/s because reading from NAND is much faster than writing to it. Write speeds of 32GB or smaller flash devices can barely hit 40MB/s because the NAND itself can't write faster, and it's the write speeds that matter when syncing. Even if we're dealing with a full blown SATA SSD the write performance for 32GB models is around 40MB/s. Performance does scale with capacity so a 64GB or 128GB model will be faster but we are still far away from data rates over 100MB/s. Reply
  • fokka - Wednesday, October 30, 2013 - link

    this, so much. i'm always astounded when people bring up that they wanna see (e.g.) usb3 in their next mobile device. as if there are any current devices scratching on the 30MB-mark which would be totally possible with usb2, if manufacturers wouldn't insist on implementing bargain-bin nand and even shittier usb-controllers. Reply
  • FCsean - Wednesday, October 30, 2013 - link

    It would be stupid of them to put thunderbolt cables for iOS devices since more than half of the owners don't own a mac. USB 3.0 would be the way to go but not everyone has USB 3.0 so they're not yet wasting their money in manufacturing USB 3.0 cables since it's a lot more expensive to manufacture. I think it's two times more expensive. Reply
  • darkcrayon - Wednesday, October 30, 2013 - link

    Not only that, but am I the only one who rarely syncs large amounts of data at a time anymore with an iPad? Most of the sync is done wirelessly in small amounts over time. The only time I need a full many gig sync is when I upgrade devices or (extremely rarely) need to do a full wipe. Faster syncing would be nice but it's just not the daily process it used to be. Reply
  • Sushisamurai - Wednesday, October 30, 2013 - link

    ...yeah.... I don't know about u guys, but is wireless sync all the time now, either comp to iPad or iPad OTA with iCloud, wiping my device q3-6 months. I have no issues with restoring a full 32GB, and it's pretty quick... Down speeds of 10MB/s wifi, 40MB/s LTE (OTA for both), but if I were to sync via comp, a HDD to NAND is pretty abysmal speeds. Not to mention, if it was TB/USB3 u're going to have a thickness increase, and I'd rather not. Inductive charging, if u recall, is a slow, inefficient form of charging. I'd rather have my full 2A going into my iPad versuses drawing the same 12W but giving me the equivalent of 6W wirelessly. NFC and tablets? Okayyyyyyyy there. Reply
  • petersellers - Wednesday, October 30, 2013 - link

    Doubly stupid considering that thunderbolt runs on PCI express lanes and PCI express is not present in any of these devices Reply
  • ekotan - Wednesday, October 30, 2013 - link

    You can't have Thunderbolt without a corresponding Intel chipset, so forget about it on any ARM tablet. Also, the NAND used by these devices is so slow that having Thunderbolt would be utterly pointless. Most can't even saturate USB 2.0, never mind USB 3.0. Only the most recent Apple mobile devices have NAND fast enough to saturate USB 2.0. Reply
  • abazigal - Saturday, November 2, 2013 - link

    I restored my 5s recently (coming from a 32gb 4s). The whole process took 1-2 minutes at most. Just plug in and click a button. Likewise, few people are so fastidious as to back up their devices via iTunes manually every day. The time savings from going thunderbolt is so minimal that unless your life somehow revolves around restoring thousands of these devices every day, I don't feel the benefits are worth the added cost. Reply
  • iSayuSay - Sunday, November 3, 2013 - link

    And how Thunderbolt sync would help? Did you realize how much is the transfer rate from NAND flash in the iPad/iPhone? No more than 16MB/s, it's not SSD per say. It's a slow internal memory it becomes bottleneck. So as long as Apple do not change those (I doubt it will ever for the next 5 years), there's no point of porting Lightning to Thunderbolt or even USB 3.0 .. Ever. Reply

Log in

Don't have an account? Sign up now