Software Support

Calxeda supports Ubuntu and Fedora, though any distribution based on the (32-bit) ARM Linux kernel should in theory be able to run on the EnergyCore SoCs. As for availability, there are already prebuilt Highbank kernel images available in the Ubuntu ARM repository and Calxeda has set up a PPA of its own to ease its kernel development.

The company has also joined Linaro—the non-profit organization aiming to bring the open source ecosystem to ARM SoCs.

The ARM Server CPU

A dual Xeon E5 or Opteron 6300 server has much more processing power than most of us need to run one server application. That is the reason why it is not uncommon to see 10, 20 or even more virtual machines running on top of them. Extremely large databases and HPC applications are the noticeable exceptions, but in general, server purchasers are rarely worried about whether or not the new server will be fast enough to run one application.

Returning to our Boston Viridis server, the whole idea behind the server is not to virtualize but to give each server application its own physical node. Each server node has one quad-core Cortex-A9 with 4MB of L2 cache and 4GB of RAM. With that being the case, the question "what can this server node cope with?" is a lot more relevant. We will show you a real world load further in this review, but we thought it would be good to first characterize the performance profile of the EnergyCore-1000 at 1.4GHz. We used four different benchmarks: Stream, 7z LZMA compression, 7z LZMA decompression, and make/gcc building and compiling.

We compare the ECX-1000 (quad-core, 3.8~5W, 40nm) with an Intel Atom 230 (1.6GHz single-core plus Hyper-Threading, 4W TDP, 45nm), Atom N450 (1.66GHz single-core + HTT, 5.5W TDP, 45nm), Atom N2800 (1.86GHz dual-core + HTT, 6.5W, 32nm), and an Intel Xeon E5-2650L (1.8-2.3GHz octal-core, 70W TDP, 32nm).

The best comparable Atom would be the Atom S1200, which is Intel's first micro-server chip. However the latter was not available to us yet, but we are actively trying to get Intel's latest Atom in house for testing. We will update our numbers as soon as we can get an Atom S1200 system. The Atom N2800 should be very close to the S1200, as it has the same architecture, L2 cache size, TDP, and runs at similar clockspeeds. The Atom N2800 supports DDR3-1066 while Centerton will support DDR3-1333, but we have reason to believe (see further) that this won't matter.

The Atom 230/330 and N450 are old 45nm chips (2008-2010). And before you think using the Atom 230 and N450 is useless: the Atom architecture has not changed for years. Intel has lowered the power consumption, increased the clockspeed, and integrated a (slightly) faster memory controller, but essentially the Atom 230 has the same core as the latest Atom N2000. I quote Anand as he puts it succinctly: "Atom is in dire need of an architecture update (something we'll get in 2013)."

So for now, the Atom 230 and N450 numbers give us a good way to evaluate how the improvements in the "uncore" impact server performance. It is also interesting to see where the ECX-1000 lands. Does it outperform the N2800, or is just barely above the older Atom cores?

 

A Closer Look at the Server Node Benchmarking Configuration
Comments Locked

99 Comments

View All Comments

  • JohanAnandtech - Wednesday, March 13, 2013 - link

    Ok, good question. I'll look into it, as I am definitely considering a follow-up
  • skyroski - Wednesday, March 13, 2013 - link

    I make performance oriented web apps for a living and I was looking forward to this performance test very much. However, I was quite disappointed at how you have done the "real world" test.

    If you're serving a single site you would never put a Xeon through the performance penalties of virtualisation, so I deem your real world results flawed/unusable.

    Basically, if I was to consider buying a Calxeda server tomorrow, I want to know if I can serve a site faster/better by using the "cluster in a box" solution which ARM's partners are going for or if a single Xeon server with standardised dedicated hardware will serve me and my businesses better.

    The other thing that I would have also tested is SSL request performance because Intel has AES-NI built in and I believe ARM has something similar? I would say the majority of request today for a serious web app/site will be traffic using the SSL protocol, so that would also be one of those deciding factors I would look at.

    If I was a cloud host provider your comparison may contain some truth as their business model would be to presumably let each ARM node out as a VPS alternative, but that isn't what you were testing were you?
  • JohanAnandtech - Wednesday, March 13, 2013 - link

    1. The single site: it is not meant to be an environment of one single site. The reason why we use the same site over and over again, is that it makes it easier to interpret the results and more repeatable. Consider a hosting provider who host many similar - but not the same - LAMP sites.
    The repeatable part is the part that most people don't understand very well: we don't just hit the same URL over and over again. We perform real user interactions and randomize them in realworld patterns (like logging in first and then several real actions) and then getting a repeatable benchmark gets very complex.
    2. The SSL comment is definitely good feedback. We are currently writing the connection code for such SSL websites but also need to find one or more good examples. If your site is a good example, maybe we can use yours (even under NDA if necessary) ?
    3. Lastly, the virtualization overhead of ESXi 5 is very small.
  • Kurge - Wednesday, March 13, 2013 - link

    You know, you can host multiple different LAMP sites on bare metal ;)
  • klmccaughey - Wednesday, March 13, 2013 - link

    It won't be LAMP sites any more though - take a trawl through something like the Linode forums to get an idea of what people are building. You are talking higher concurrency and more likely nginx.

    Someone made a valid comment about database sharding - for web apps this is much more likely as people try to make sure they have failover.

    Whilst initially very disappointed, if you imaging the refresh on the ARM cores over the next 2 years (and considering the rate of change due to the phone market) you might actualy be looking at a beast of a machine in two or three iterations. Imagine if you could buy these off the shelf for under $10k: That feels to me like mission critical failover systems in a box. I can see this taking off in a couple of years.
  • klmccaughey - Wednesday, March 13, 2013 - link

    And kudos for the review - I look forward to the follow-up. This is a space that needs watching!
  • Silma - Thursday, March 14, 2013 - link

    True but do you think Intel will stop product development for the next 3 years? In addition who will have the best fabs then? My guess is Intel.
  • Krysto - Monday, March 18, 2013 - link

    I don't know how fast it actually is, but relative to the ARMv7 architecture, AES should be up to 10x faster on ARMv8.
  • kfreund - Wednesday, March 13, 2013 - link

    Nice job, Johan. Can't wait to see your next one; we will be sure to get you an A15 based system as soon as we get it out! Let the debates begin!
  • kfreund - Wednesday, March 13, 2013 - link

    Regarding Stream performance, this is a known limitation of A9; it just can't handle a lot of concurrent memory requests. A15 will nearly triple the memory bandwidth at same DDR rate.

Log in

Don't have an account? Sign up now