ASUS P8Z77-V Pro – BIOS

ASUS BIOSes, ever since we went graphical back in P67, have been at the top of presentation and usability of the graphical interface.  Therefore, it would have been odd if ASUS had done something vastly different for Z77.  Luckily, the same interface greets us – initial entry into the BIOS greets us in EZ mode (I still call it ee-zed, being a Brit), which displays the time, the motherboard, the BIOS version, the CPU, the CPU speed, the memory, temperatures, voltages, fan speeds and the boot order.  As an entry screen it is very informative, suitable for most users to implement a power saving or turbo mode, or the boot order.

However, the meat of the BIOS is all in the Advanced mode, where the BIOS takes a more traditional look.  Screens of interest here are the AI Tweaker, where overclocks are made.  This screens below shows an applied Extreme Memory Profile, with MultiCore Enhancement enabled, memory set at the correct strap and additional voltage applied to the memory as defined in the XMP.

Adjusting memory subtimings occurs in the DRAM Timing Control, and DIGI+ Power Control allows adjustment of load line calibrations as well as current capacities should a user desire extreme overclocks. The CPU, VRM, iGPU and DRAM can all benefit from DIGI+ control

ASUS have had good fan profile options in their software, so the options in the BIOS are a little sparse in comparison to their OS offerings, though this could be down to BIOS limitations.  Temperatures and fan settings are found in the Monitor section.

Software

ASUS’ AI Suite software is the stalwart of the operating system options, and over the chipset generations I have grown accustomed to it.  ASUS is continually updating features in the software, both in relation to hardware changes but also to ideas and requirements of the users.  Having all the software under one heading helps with organization and consistency.  Now that it is also a few generations old, it no longer has the annoying delay in loading associated with previous versions.

TurboV Evo is the overclocking function of AI Suite.  As in previous versions, there is an automatic overclock function (available in ‘Fast’ and ‘Extreme’ modes) as well as a set of manual options.  Personally, I use this part of the software to test overclocks, and then apply them in the BIOS later.  Therefore, if an overclock is unstable, it does not cause the system to not boot next time around.

ASUS has adjusted the software relating to DIGI+ in order have a more concerted effort to teaching users about it.  Alongside the CPU DIGI+ and VRM DIGI+ options, we have a ‘Smart DIGI’ option that can enable the user to use low power DIGI+ settings, or a set of useful settings for overclockers.

Fan Xpert 2 is an upgraded take on the fan software previously distributed with ASUS products.  In this instance, when Fan Xpert is loaded, it asks to be able to test all the fans across their full range of speeds.  This allows the software to produce graphs relating applied power with actual RPM and performance.  So for example, my CPU fan has a minimum of 846 RPM at 23% applied power, up to 2261 RPM at 100%.  Below 23% power invokes the minimum RPM setting:

WiFi Go settings also get an upgrade – with the included WiFi module on board a user can set up a multimedia streaming center with the ASUS board in order to send files across to WiFi enabled televisions, or be controlled by tablets with the appropriate apps.  File transfer is also available in a similar fashion.  The software also allows the PC to act as a wireless access point for the internet.

Alongside the quick charging features (Ai Charger+, USB Charger+) which promise to decrease charge time for smartphones, tablets and Apple products, due to the use of Intel network controllers on board, we have software in order to be able to manipulate network traffic.  At its simplest level, this means giving priority to certain applications (games) over others (file transfer):

Other smaller features with AI Suite include the BIOS Flashback utility and software to change the initial boot up logo screen.  I purposefully saved talking about USB 3.0 Boost until last, as we now have the ability to test it.

ASUS kindly provided a SATA 3.0 to USB 3.0 hub, along with a high speed SSD to test how their USB 3.0 Boost system in terms of what benefits in can bring over normal USB 3.0.  At the heart of the system is the ability to adjust the USB protocol, from the normal Windows protocol, to either a turbo mode (on the chipset USB 3.0) or a USB-attached SCSI protocol (UASP) with a capable device on an ASMedia USB 3.0, or on the Chipset boards with Windows 8.

Both the Turbo and UASP modes offer a different set of commands to the USB in order to improve transfer rates.  Initially, I performed my standard CrystalDiskMark test, which uses incompressible data for stress the reads and writes of each of the modes (Intel USB 3.0 Normal, Intel USB 3.0 Turbo, ASMedia USB 3.0 Normal, ASMedia USB 3.0 UASP), followed by our standard USB copy test.

The results ended up with the Intel Turbo mode (which depends on memory speed) outperforming the ASMedia UASP, which seems counter-intuitive.  The benefits of UASP are actually outside my own normal usage model for USB – I typically use USB as file storage or as a method of transferring files between systems.  The benefits of UASP lie in using a USB device as if it was a drive in the system – in situations where queue depth could be high.  With this in mind, I tested all four different USB 3.0 models with ATTO Disk Benchmark and a full suite of CrystalDiskMark:

Alternatively, to put it in a more readable format:

In terms of read speeds at a QD of four, UASP achieves supreme performance when dealing with small (< 64 KB) transfer sizes.

For write speeds, UASP outperforms Turbo across the whole range of Transfer Sizes, again most notably at sub-64 KB transfer sizes.

What we can see is that the add-in controller (ASMedia) with UASP can easily out perform the Intel controller in Normal mode.  When the Intel controller is kicked into Turbo mode, it has a direct link to the PCH whereas the ASMedia goes via an x1 PCI-E link.  This means under Turbo, the Intel has the advantage at peak loads, but the UASP protocol still wins out under short file transfers due to the efficiency at the command level.

ASUS P8Z77-V Pro - Overview, Visual Inspection and Board Features ASUS P8Z77-V Pro - In The Box, Overclocking
Comments Locked

117 Comments

View All Comments

  • bji - Tuesday, May 8, 2012 - link

    Don't intelligently designed modern operating systems use as much unused RAM as is available as filesystem cache? I know Linux does, I would expect Windows 7 does as well. In which case, I have to wonder what the value of a RAM disk except to make your persisted data completely volatile and lost on a power outage.

    Turning the unusable RAM beyond 4 GB into a RAM disk when a 32 bit operating system is in use is the only marginally useful feature that you mentioned, but you have to be stuck with a 32 bit OS for that to be of any value.

    Using a RAM disk comes at the cost of vastly increased complexity for managing persisted files (having to copy things from RAM disk to persistent storage before shutting down) and vastly increased risk of loss of data on unexpected power outage. All of the RAM disk useability features in the world won't help with those issues.
  • Zoomer - Tuesday, May 15, 2012 - link

    Temp, cache or scratch files would be good uses of a ramdisk. Other than that, there's really no point.
  • kstan12 - Tuesday, May 8, 2012 - link

    i would *love* to read a review of ivy bridge that doesn't include an engineering sample. my i7-3770k seems to want a lot more voltage @ 4.7 than what i see in reviews online. i know one might clock higher than another but it seems these ES samples use less voltage. am i wrong here?

    and where did you get the updated bios for the asus p8z77-v pro? i can only download 0906. :-)
  • IanCutress - Tuesday, May 8, 2012 - link

    Hi Kstan12,

    My ES is stepping 9, which is identical to retail. It's all about the luck of the silicon at the end of the day.

    Ian
  • kstan12 - Wednesday, May 9, 2012 - link

    oh ok, so you would just compare the stepping, thanks! maybe i'm not so good at overclocking too.

    love reading your articles...you explain things quite well, good work!
  • vegemeister - Thursday, May 10, 2012 - link

    Unless you bought it retail, they could have easily given you a cherry-picked chip. There is a lot of variation in semiconductor manufacturing, even on the same stepping.
  • Zoomer - Tuesday, May 15, 2012 - link

    If that's the results from a cherry picked chip, there would be a very compelling reason to choose SB over IVB for overclockers.
  • JSt0rm01 - Tuesday, May 8, 2012 - link

    But I feel like the release schedule has slowed way way way down. We need amd to step back up to the plate. We need more competition. I have been waiting on the new xeon parts for what seems like forever.

    -------------
    Also, after being a member of the anandtech forums for 10 years I was permanently banned by the moderators there because they wanted to censor a website (ffdt.info) that had conversation that was critical of their moderation. I find that the free flow of all information on the internet is critical. For a tech website such as this to limit the flow of information is offensive the core of these beliefs and its all because certain people in positions of illusory power deem that information detrimental to their positions.
  • bji - Tuesday, May 8, 2012 - link

    To your first point, x86 development HAS slowed way down and the trend will continue. With consumer computer usage turning more to cell phones and tablets, the market for faster x86 parts can no longer sustain the billions of dollars of R&D necessary to advance x86 state of the art. Intel is probably in the process of reducing their x86 R&D budgets in anticipation of this.

    This will not change, even if AMD makes a comeback. I have predicted in the past that the fastest x86 part ever to be produced will be no faster than 50% faster than the current fastest Ivy Bridge. I stand by that prediction.

    Sadly, the heady days of rapid advances in x86 tech are over, as anyone who witnessed the early/mid 2000's and can compare them to now will testify to.
  • JSt0rm01 - Tuesday, May 8, 2012 - link

    Its unfortunate for power users. I will probably end up with a 2010 6-core mac pro to replace my aging 2006 macpro (please no anti-apple I use certain software and my industry is almost 100% apple I also have been building my own pcs since 1998) but what comes after that? I've already held this macpro for longer then I've had any computer. I guess what comes next? Will arm processors in 15 years be monsters of computational power?

    -------------
    Also, after being a member of the anandtech forums for 10 years I was permanently banned by the moderators there because they wanted to censor a website (ffdt.info) that had conversation that was critical of their moderation. I find that the free flow of all information on the internet is critical. For a tech website such as this to limit the flow of information is offensive the core of these beliefs and its all because certain people in positions of illusory power deem that information detrimental to their positions.

Log in

Don't have an account? Sign up now