Killer Network Manager and Other Thoughts

We’ve shown the performance of the Bigfoot Killer 1102. It’s good, no doubt about that. Before wrapping up, we wanted to go over a few other tidbits, like the Killer Network Manager utility, availability, and pricing.

One of the core parts of the Killer product line is the network manager utility. This is where you can prioritize network traffic from specific programs—or alternately set certain programs to a lower priority so they won’t interfere with important traffic. As one example, Bigfoot explains how you can run a BitTorrent client while gaming without massive amounts of lag. First, set the BitTorrent client to the lowest priority, and then set the game traffic to highest priority. Bigfoot’s utility already recognizes and prioritizes a lot of modern games traffic, but it’s easy to add other titles and applications. Below is a gallery of the user interface, showing the currently active processes that are using the network.

The ability to prioritize traffic works as advertised, but it only helps when you’re using multiple network streams on the same system. If you’re running BitTorrent on a different PC (or downloading Windows updates or some other large files), lag quickly becomes an issue on other networked PCs. If you want to overcome such problems, you’ll need a router that can prioritize network traffic (QoS). So ask yourself, how often are you in a situation where you have to download something bandwidth intensive while gaming? More likely, it’s your spouse or kids doing the downloading while you game, and they’re on a different PC. A good quality router with gaming QoS features would seem to fit that use case better than putting a single Killer Wireless-N adapter into one (or multiple) laptops.

Putting your money into a good router is thus my first recommendation, but another potential drawback with the Killer Wireless-N that immediately sticks out is the lack of Bluetooth support. Intel’s 6300 is in the same boat, but the Intel 6230 will get you 2.4+5GHz wireless along with Bluetooth; the 1102 with a separate Bluetooth device will typically run about $40 extra. Looking at pricing, some companies appear to be charging a premium for the Killer Wireless (Alienware for instance); $80 extra for the Killer 1103 plus Bluetooth compared to the Intel 6230 is a pretty steep upsell in my book. If you need Bluetooth, you would need a laptop with a second mini-PCIe slot for the Bluetooth adapter.

Another issue with Bigfoot’s Killer Wireless-N products is that they’re currently only available with a new laptop, so if you already have a laptop and you just want to upgrade the WiFi adapter, tough luck. We understand some OEMs don’t make swapping in a different WiFi adapter easy (Lenovo for sure, and probably a others as well). Rather than eliminate all aftermarket sales, however, we feel it would be better for Bigfoot to compile a list of known compatible and incompatible laptops and at least let the enthusiasts upgrade. This is certainly an enthusiast product, after all, and it’s doubtful non-enthusiasts would even be in the market for a new wireless adapter. Of course, finding other offerings is quite difficult; only Intel models are readily available online, e.g. at Newegg.com, or you’ll have to brave eBay and hope you can find what you’re after.

Update: Interestingly, Mythlogic just emailed me to inform me that they're also selling the Bigfoot 1102 and 1103 adapters via Amazon. You can grab the 1102 for $40, or go whole hog with the 1103 for $60. By comparison, Intel's 6200 goes for $24 and their 6300 costs $35 (though the latter is currently out of stock). So, if you have an laptop with poor wireless that you'd like to upgrade, you can take the plunge. I'm going to include this note in the conclusion as well, since this is important information on availability.

The above issues aren’t major problems, but I did want to make note of them before wrapping things up. Like most products, the Killer Wireless-N isn’t perfect. It does certain things really well, and sometimes it makes a few compromises to focus on those areas. As shown on the previous page, range is slightly less than some products, but trading range for performance makes sense for home users, and 5GHz networking is basically the same thing on a more dramatic scale.

What about Wired Ethernet? Bigfoot’s Killer Wireless-N 1102: Living up to Its Name
Comments Locked

52 Comments

View All Comments

  • DesktopMan - Wednesday, August 10, 2011 - link

    What's the reason for the big difference with these results: http://www.smallnetbuilder.com/wireless/wireless-r...

    Anyone know?
  • Reflex - Wednesday, August 10, 2011 - link

    Probably different laptops. This review is unfortunatly not very good because if I'm reading the first couple pages correctly, he used different laptops for each card. Contrary to his earlier experience, most laptops will accept any wifi card you wish. I swapped in a 6300 in my Dell a year ago and it works great.

    They need to establish a baseline testing platform to isolate the perf between the cards. Testing them all on different laptops invalidates the test. Hard drives, CPU's, memory speed, etc can have a *huge* impact on wifi performance, especially for file copy type operations. And the range test is completely irrelevant as everyone has their own way of routing the antennas up through the lid.
  • JarredWalton - Wednesday, August 10, 2011 - link

    For wireless, the storage actually matters almost not at all. I swapped in an HDD to one of the laptops and ran the two file copy tests. The HDD was withing 1 second of the SSD for the large file, and within 3 seconds on the small files. On GbE, HDD vs. SSD is a huge disparity, but with WiFi topping out at <30MBps it really doesn't matter much. The WiFi latency appears to be almost as bad as the HDD latency for seek operations.

    But you're right: the different laptops all make it hard to to apples-to-apples, and depending on vendor swapping in a different WiFi card may or may not work. The real issue for me was lack of time; I kept going back and forth between devices as I discovered a potential issue with one of the results. Now that I'm more comfortable with what WiFi testing entails, I'm hoping (not right now, but maybe in a couple months) to go through and test a bunch of cards in a single laptop, as well as in a PCI-E x1 desktop adapter.
  • endrebjorsvik - Sunday, August 14, 2011 - link

    This puzzles me as well. The last couple of days I have been struggling with getting decent performance from my own setup. I have a Netgear WNDR3700v2 and a Lenovo X220 fitted with i5-2520M and Intel 6300 3x3 and running W7. A HP ProLiant ML110 G6 with GbE and 4x2TB RAID-Z is serving the test-files.
    According to smallnetbuilder.com, the WNDR3700v2 ( http://www.smallnetbuilder.com/wireless/wireless-r... ) should be faster than WNR3500L ( http://www.smallnetbuilder.com/wireless/wireless-r... ), so my setup should at least be as fast as Jarred's Netgear-Intel6300-Ideal-result (154 Mb/s).
    I have tried both 2,4 and 5 GHz with both 20 and 40 MHz BW and with both stock and open firmware (dd-wrt), but I don't even get to 90 Mb/s (Windows file transfer tops out at 11 MB/s = 88 Mb/s, and usually stays below 10 MB/s). The distance between the router and laptop is ~6 feet, and I have tried every possible position of the router (different antenna directions). The laptop lid is open (~90 degrees).

    So I wonder if you (Jarred) came across any mindblowing tricks that increased the throughput dramatically? Or was the Netgear-Intel6300-combo just plug'n'play?
  • JarredWalton - Sunday, August 21, 2011 - link

    What are you copying from? 11MB/s max sounds like you've got the Ethernet side hooked up to a 100Mb port, or else you're doing a transfer from one wireless PC to another? In that case, you'd be doing 22MB/s of wireless traffic, which would be pretty good considering collisions and such.
  • ss284 - Wednesday, August 10, 2011 - link

    It would have been really great if a recent macbook's wireless throughput was tested. I believe all the recent refreshes have the same broadcom based wireless adapter.
  • xdrol - Wednesday, August 10, 2011 - link

    "the number of streams cannot be more than the larger of the transmit/receive chains (so 2x2:3 isn’t possible, but 2x3:3 is)"

    No it is not. It cannot be more than the SMALLER of the two. But the transmit and receive antennas are on a different device, so a given device could support more than it's Tx/Rx antennas, but only in the other direction (where it does have more antennas).

    As for specifying what 1 given device can do, then there are actually 4 different numbers, 3 are not enough:
    - The number of Tx antennas (a)
    - The number of spatial streams to be received (<=a)
    - The number of Rx antennas (b)
    - The number of spatial streams to be transmitted (<=b)

    As WiFi is a symmetrical system, the Tx and Rx features of a device are usually the same (read: I'm yet to see any that differ) - unlike e.g. LTE, where the usual MIMO currently is only downlink, but not uplink (it has different PHY for uplink anyway).

    In the example, the 2x3:3 is valid only if you meant it has 2 Tx antennas, 3 Rx antennas, and it can RECEIVE 3 spatial streams. As it has only 2 antennas, the maximum outbound spatial streams is 2.
  • Brian Klug - Wednesday, August 10, 2011 - link

    That's technically right, and we do mention that the Intel 1030 can do two streams on Rx and one on Tx, but I've seen very few routers actually support an asymmetrical MIMO scheme like that. Even the intel card for example always only shows 1 stream being used for Tx and Rx, so in practice really it should be symmetrical.

    -Brian
  • James5mith - Wednesday, August 10, 2011 - link

    Maybe I'm used to living in smaller places, but 60 feet from your front door to the router? That seems a bit extreme. Is the router in the attic, and the front door in the basement corner of the house or something?
  • James5mith - Wednesday, August 10, 2011 - link

    Actually, more to the point, if it's 60 ft to your front door, then your google maps view shows the Intel 6300 making it nearly 500 ft from the router in the Cisco 2.4GHz test. You stated it was 200 ft.

Log in

Don't have an account? Sign up now