Z68

In developing its 6-series chipsets Intel wanted to minimize as much risk as possible, so much of the underlying chipset architecture is borrowed from Lynnfield’s 5-series platform. The conservative chipset development for Sandy Bridge left a hole in the lineup. The P67 chipset lets you overclock CPU and memory but it lacks the flexible display interface necessary to support SNB’s HD Graphics. The H67 chipset has an FDI so you can use the on-die GPU, however it doesn’t support CPU or memory overclocking. What about those users who don’t need a discrete GPU but still want to overclock their CPUs? With the chipsets that Intel is launching today, you’re effectively forced to buy a discrete GPU if you want to overclock your CPU. This is great for AMD/NVIDIA, but not so great for consumers who don’t need a discrete GPU and not the most sensible decision on Intel’s part.

There is a third member of the 6-series family that will begin shipping in Q2: Z68. Take P67, add processor graphics support and you’ve got Z68. It’s as simple as that. Z68 is also slated to support something called SSD Caching, which Intel hasn’t said anything to us about yet. With version 10.5 of Intel’s Rapid Storage Technology drivers, Z68 will support SSD caching. This sounds like the holy grail of SSD/HDD setups, where you have a single drive letter and the driver manages what goes on your SSD vs. HDD. Whether SSD Caching is indeed a DIY hybrid hard drive technology remains to be seen. It’s also unclear whether or not P67/H67 will get SSD Caching once 10.5 ships.

LGA-2011 Coming in Q4

One side effect of Intel’s tick-tock cadence is a staggered release update schedule for various market segments. For example, Nehalem’s release in Q4 2008 took care of the high-end desktop market, however it didn’t see an update until the beginning of 2010 with Gulftown. Similarly, while Lynnfield debuted in Q3 2009 it was left out of the 32nm refresh in early 2010. Sandy Bridge is essentially that 32nm update to Lynnfield.

So where does that leave Nehalem and Gulftown owners? For the most part, the X58 platform is a dead end. While there are some niche benefits (more PCIe lanes, more memory bandwidth, 6-core support), the majority of users would be better served by Sandy Bridge on LGA-1155.

For the users who need those benefits however, there is a version of Sandy Bridge for you. It’s codenamed Sandy Bridge-E and it’ll debut in Q4 2011. The chips will be available in both 4 and 6 core versions with a large L3 cache (Intel isn’t being specific at this point).

SNB-E will get the ring bus, on-die PCIe and all of the other features of the LGA-1155 Sandy Bridge processors, but it won’t have an integrated GPU. While current SNB parts top out at 95W TDP, SNB-E will run all the way up to 130W—similar to existing LGA-1366 parts.

The new high-end platform will require a new socket and motherboard (LGA-2011). Expect CPU prices to start off at around the $294 level of the new i7-2600 and run all the way up to $999.

UEFI Support: 3TB Drives & Mouse Support Pre-Boot A Near-Perfect HTPC
Comments Locked

283 Comments

View All Comments

  • 7Enigma - Monday, January 3, 2011 - link

    Do you happen to remember the space heater.....ahem, I mean P4?
  • DanNeely - Monday, January 3, 2011 - link

    I do. Intel used bigger heatsinks than they do for mainstream parts today.
  • panx3dx - Monday, January 3, 2011 - link

    The article states that in order for quick sync to function, a display must be connected to the integrated graphics. Since p67 does not support the IGP, then quick sync will be disabled???
  • panx3dx - Monday, January 3, 2011 - link

    Opps, just saw Doormat already asked the question on page three, and I can't find a way to edit or delete my post. However no one has yet to give a clear answer.
  • Next9 - Monday, January 3, 2011 - link

    There is not any problem with BIOS and 3TB drives. Using GPT you can boot such a drive either on BIOS or UEFI based system. You should only blame Windows and their obsolete MS-DOS partitioning scheme and MS-DOS bootloader.
  • mino - Monday, January 3, 2011 - link

    Microsoft not supporting GPT on BIOS systems (hence 3TB drivers on BIOS systems) was a pure BUSINESS decision.

    It had nothing to do with technology which is readily available.
  • mino - Monday, January 3, 2011 - link

    In the table there is "N" for the i3 CPUs.

    But in the text there is: "While _all_ SNB parts support VT-x, only three support VT-d"

    Could you check it out and clarify? (there is no data on ark.intel.com yet)
  • mczak - Monday, January 3, 2011 - link

    It's not exactly true that HD3000 has less compute performance than HD5450, at least it's not that clear cut.
    It has 12 EUs, and since they are 128bit wide, this would amount to "48SP" if you count like AMD. Factor in the clock difference and that's actually more cores (when running at 1300Mhz at least). Though if you only look at MAD throughput, then it is indeed less (as intel igp still can't quite do MAD, though it can do MAC).
    It's a bit disappointing though to see mostly HD2000 on the desktop, with the exception of a few select parts, which is not really that much faster compared to Ironlake IGP (which isn't surprising - after all Ironlake had twice the EUs albeit at a lower clock, so the architectural improvements are still quite obvious).
  • DanNeely - Monday, January 3, 2011 - link

    That's not true. Each AMD SP is a pipeline, the 4th one on a 69xx (or 5th on a 58xx) series card is 64 bits wide, not 32. They can't all be combined into a single 128 (160, 196) bit wide FPU.
  • kallogan - Monday, January 3, 2011 - link

    I'll wait for 22 nm. No point in upgrading for now

Log in

Don't have an account? Sign up now