Power Consumption

SSDs are at their highest power consumption when performing large file sequential writes. The majority of the power consumption comes from writing to the NAND flash and when you’re doing sequential writes you have more flash devices engaged at a time. Thus my peak power consumption test involves measuring power used over the 5V rail while the drives perform my 2MB sequential write benchmark in Iometer and at idle of course.

First, the idle numbers:

Idle Drive Power

The Samsung and Indilinx drives use the least power, while the Intel drives use the most out of the SSDs. Intel honestly just needs to stick some power gate transistors in front of the controller and flash to curb power consumption at idle. They are all still lower than a mechanical drive, and much lower than a 3.5" HDD.

It's also worth noting that given the order of magnitude performance advantage these drives hold over traditional hard drives, they spend far more time at idle than their mechanical counterparts.

Load Drive Power

Under load the SSDs use anywhere from 2.5 - 3.5W, the exception being the Indilinx SLC drive which comes in at under 2W. Power consumption is roughly half if you switch to a random write workload, and the standings also switch places. While Intel's X25-M G2 draws less power than the OCZ Vertex Turbo in the sequential write test, it draws more power in a random write workload:

Random Write Power Consumption Min Average Max
Intel X25-M G2 160GB (MLC) 1.55 W 1.60 W 1.7 W
OCZ Vertex Turbo 128GB (Indilinx MLC) 1.13 W 1.17 W 1.21 W

 

As I alluded to before, the much higher performance of these drives than a traditional hard drive means that they spend much more time at an idle power state. The Seagate Momentus 5400.6 has roughly the same power characteristics of these two drives, but they outperform the Seagate by a factor of at least 16x. In other words, a good SSD delivers an order of magnitude better performance per watt than even a very efficient hard drive.

Individual Application Performance Final Words
Comments Locked

295 Comments

View All Comments

  • Anand Lal Shimpi - Monday, August 31, 2009 - link

    The tables the drive needs to operate are also stored in a small amount of flash on the drive. The start of the circular logic happens in firmware which points to the initial flash locations, which then tells the controller how to map LBAs to flash pages.

    Take care,
    Anand
  • Bakkone - Monday, August 31, 2009 - link

    Any gossip about the new SATA?
  • Zaitsev - Monday, August 31, 2009 - link

    Thanks for the great article, Anand! It's been quite entertaining thus far.
  • cosmotic - Monday, August 31, 2009 - link

    The page about sizes (GB, GiB, spare areas, etc) is very confusing. It sounds very much like you are confusing the 'missing' space when converting from GB to GiB with the space the drive is using for its spare area.

    Is it the case that the drive has 80GiB internally, uses 5.5GiB for spare, and reports it's size as 80GB to the OS leaving the OS to say 74.5GiB as usable?
  • Anand Lal Shimpi - Monday, August 31, 2009 - link

    I tried to keep it simply by not introducing the Gibibyte but I see that I failed there :)

    You are correct, the drive has 80GiB internally, uses 5.5GiB for spare and reports that it has 156,301,488 sectors (or 74.5GiB) of user addressable space.

    Take care,
    Anand
  • sprockkets - Tuesday, September 1, 2009 - link

    Weird. So what you are saying is, the drive has 80Gib capacity, but then reports it has 80GB to the OS, advertised as having an 80GB capacity, which the OS then says the capacity is 74.5GiB?
  • sprockkets - Tuesday, September 1, 2009 - link

    As a quick followup, this whole SI vs binary thing needs to be clarified using the proper terms, as people like Microsoft and others have been saying GB when it really is GiB (or was the GiB term invented later?)

    For those who want a quick way to convert:

    http://converter.50webs.com">http://converter.50webs.com
  • ilkhan - Monday, August 31, 2009 - link

    so they are artifically bringing the capacity down, because the drive has the full advertised capacity and is getting the "normal" real capacity. :argh:
  • Vozer - Monday, August 31, 2009 - link

    I tried looking for the answer, but haven't found it anywhere so here it is: There are 10 flash memory blocks on both Intel 160GB and 80GB X25-M G2, right? (and 20 blocks with the G1).

    So, is the 80GB version actually a 160GB with some bad blocks or do they actually produce two different kind of flash memory block to use on their drives?
  • Anand Lal Shimpi - Monday, August 31, 2009 - link

    While I haven't cracked open the 80GB G2 I have here, I don't believe the drives are binned for capacity. The 80GB model should have 10 x 8GB NAND flash devices on it, while the 160GB model should have 10 x 16GB NAND flash devices.

    Take care,
    Ananad

Log in

Don't have an account? Sign up now