The Competitors

For the most part, Intel doesn't let anyone else manufacture drives using its controller (the lone exception being Kingston). Indilinx and Samsung however both sell their controllers and designs to many other vendors, who then repackage them and sell them as their own SSDs. The table below is a decoder ring of the drives I tested and their equivalents in the marketplace:

Drive Controller The Same As
Patriot Torqx Indilinx Barefoot (MLC)

Corsair Extreme Series X128
G.Skill Falcon
OCZ Vertex
SuperTalent UltraDrive ME

OCZ Agility Indilinx Barefoot (non Samsung MLC) N/A
OCZ Vertex EX Indilinx Barefoot (SLC) SuperTalent UltraDrive LE
OCZ Summit Samsung RBB (MLC) Corsair Performance Series P256


While I used the Torqx from Patriot as my Indilinx MLC drive, it's the same drive and uses the same firmware as OCZ's famed Vertex drive or the new Cosair Extreme Series SSD. The only exception on this list is the OCZ Agility. The Agility uses the same Barefoot controller as the Torqx, Vertex, UltraDrive ME and Corsair X series, but it uses non-Samsung flash memory to lower cost. The Agility currently ships with either Toshiba or Intel flash, but should be roughly the same performance as the other Indilinx MLC drives.

I included the SLC drives as a reference point, but for desktop use they are overkill. Not only is their firmware not optimized for desktop usage patterns, but they are far more expensive on a cost-per-GB basis.

All of the drives used the latest firmwares at the time of publication.

The Pricing

The table below is the pricing comparison I went through yesterday:

Drive NAND Capacity Cost per GB Price
Intel X25-M (34nm) 80GB $2.81 $225
Intel X25-M (34nm) 160GB $2.75 $440
OCZ Vertex (Indilinx) 64GB $3.41 $218
OCZ Vertex (Indilinx) 128GB $3.00 $385
Patriot Torqx (Indilinx) 64GB $3.48 $223
Patriot Torqx (Indilinx) 128GB $2.85 $365
OCZ Agility (Indilinx, non-Samsung Flash) 64GB $2.77 $177
OCZ Agility (Indilinx, non-Samsung Flash) 128GB $2.57 $329
OCZ Summit (Samsung) 128GB $3.04 $389


The new 34nm drives were supposed to start shipping yesterday, but I've yet to see them available online. It's also worth mentioning that Intel doesn't give out street pricing, only 1,000 unit pricing. The street price of the X25-M G2 drives could be higher at first, similar to what we saw with the 1st gen drives, eventually leveling off below the 1Ku pricing.

Inside the Drive: 2x Density Flash and more DRAM The Performance
Comments Locked


View All Comments

  • has407 - Sunday, July 26, 2009 - link

    Seen the same on a couple sites. Apparently setting a drive password and then trying to change or disable it can cause the drive to become inaccessible. They're also no longer listed on Newegg.
  • Jefrach - Monday, July 27, 2009 - link

    I bought one of these drives from Newegg the day they were released. I just received an email today saying I was getting a refund because they were out of stock and that the item is discontinued. Price was at listed 449.
  • billybob54321 - Saturday, July 25, 2009 - link


    I know application performance is on its way, but I'd love to see individual perforamnce time of actually running applications. The original Intel SSD review focused on copy/launch times whereas I'd be interested in run times of apps after they are launched.">

    For example, I do a lot of work in Photoshop CS4 with big RAW files. It's unclear whether the random read/write speed of the Intel drive would be superior to the sequential write of the Vertex drive when working in PS CS4 because the temp files can get into the 100's of megabytes.

    Thanks for your hard work!
  • erikejw - Friday, July 24, 2009 - link

    Is this benchmarked in a used state of the drive?
    That is how we all use hard drives so if it is not it is pretty worthless for users.
  • Cov - Friday, July 24, 2009 - link

    Here you can find results of someine who tested his SSD (that he just bought)with CrystalDiskMark:">

    (last posting on that side)
  • piasabird - Friday, July 24, 2009 - link

    These performance tests do not tell you anything.
    1. How do they compare when actually running programs in an operating system?
    2. How do they compare to a standard 500gig Hard Drive?

    How are these to be used? Are people planning on using them as hard drive replacements in laptops? What about Heat and cooling requirements like you might mention for RAM or a video card?

    The reason I am asking these questions is Microsoft Windows as an operating system is not designed that well to use these devices, and they dont show much advantage when used in cooperation with a hard drive to boot a computer faster. This seems like much todo about nothing when I can purchase a 320GB Drive for about $100.00.
  • evand - Friday, July 24, 2009 - link

    Well, some application benchmarks would be nice. But then, the article is titled "performance preview". If you don't know how to read these numbers and take a guess at what it will mean for you, then don't.

    They compare very, very favorably to a top of the line, high performance hard disk, and you're asking how well they compare to a drive that said high performance disk will eat for breakfast? Seriously, the comparison almost isn't worth making. If you're really curious, find reviews of the disk you want compared to, and see what high performance rotating drives they compared it against (or go see what regular drives that high performance drive was compared against in its reviews).

    People are considering using these on laptops, on desktops as a primary (OS / apps / heavily used data) drive with rotating media for bulk storage, in silent /fanless computers, etc.

    Why do you even need to ask about cooling and heat sinks? It doesn't need them. It draws 150mW of power. Putting heat sinks on it would be ludicrous.

    So what if Windows isn't "designed" to use these disks? It will use them without any problems. Perhaps a more carefully designed OS could eek a bit more out of them, but so what? It should be worlds faster than any rotating media you can compare it to.

    If you want capacity, go buy a 1TB drive to use a secondary data drive for $100, and use one of these for things that care about io performance rather than storage. Splitting your data across the two disks to get both good performance and lots of space isn't exactly hard for the normal desktop usage case.
  • evand - Friday, July 24, 2009 - link

    I was discussing these drives with someone who works in the storage industry with Flash technology, but not these specific drives. He had an interesting observation: a lot of flash drives will keep a pool of pre-erased pages available for writing. However, they can't erase new pages fast enough to keep up with the peak random write performance indefinitely. Once the pre-erased pool runs dry, random write performance drops dramatically.

    Is this the case with the new (or old, for that matter) Intel drives? How long a time period do your random write benchmarks run for? Would you be willing to run a random writes benchmark that runs long enough to overwrite a larger fraction of the disk, and tell us whether the performance drops under sustained load?
  • iwodo - Friday, July 24, 2009 - link

    I just read other review site that Intel SSD uses SUBSTANTIALLY more CPU usage then other competing SSD. I hope your future detail review will test this out as well.

    Even thought Intel SSD uses much less power then competing SSD, the CPU usage required will discount those saving. ( Possibly uses even more power. )

    In could be another case for Intel to push you buying a more powerful CPU. Which is rather sad. Since this is exactly what happen to USB, which makes it slow and unresponsive compare to Firewire.
  • pmeinl - Friday, July 24, 2009 - link

    Does anybody know PC cases optimized for SSDs.

    I only found the following enclosures to mount SSDs in cases designed for HDs:">">

Log in

Don't have an account? Sign up now