CPU MT Performance: A Real Monster

What’s more interesting than ST performance, is MT performance. With 8 performance cores and 2 efficiency cores, this is now the largest iteration of Apple Silicon we’ve seen.

As a prelude into the scores, I wanted to remark some things on the previous smaller M1 chip. The 4+4 setup on the M1 actually resulted that a significant chunk of the MT performance being enabled by the E-cores, with the SPECint score in particular seeing a +33% performance boost versus just the 4 P-cores of the system. Because the new M1 Pro and Max have 2 less E-cores, just assuming linear scaling, the theoretical peak of the M1 Pro/Max should be +62% over the M1. Of course, the new chips should behave better than linear, due to the better memory subsystem.

In the detailed scores I’m showcasing the full 8+2 scores of the new chips, and later we’ll talk about the 8 P scores in context. I hadn’t run the MT scores of the new Fortran compiler set on the M1 and some numbers will be missing from the charts because of that reason.

SPECint2017 Rate-N Estimated Scores

Looking at the data – there’s very evident changes to Apple’s performance positioning with the new 10-core CPU. Although, yes, Apple does have 2 additional cores versus the 8-core 11980HK or the 5980HS, the performance advantages of Apple’s silicon is far ahead of either competitor in most workloads. Again, to reiterate, we’re comparing the M1 Max against Intel’s best of the best, and also nearly AMD’s best (The 5980HX has a 45W TDP).

The one workload standing out to me the most was 502.gcc_r, where the M1 Max nearly doubles the M1 score, and lands in +69% ahead of the 11980HK. We’re seeing similar mind-boggling performance deltas in other workloads, memory bound tests such as mcf and omnetpp are evidently in Apple’s forte. A few of the workloads, mostly more core-bound or L2 resident, have less advantages, or sometimes even fall behind AMD’s CPUs.

SPECfp2017 Rate-N Estimated Scores

The fp2017 suite has more workloads that are more memory-bound, and it’s here where the M1 Max is absolutely absurd. The workloads that put the most memory pressure and stress the DRAM the most, such as 503.bwaves, 519.lbm, 549.fotonik3d and 554.roms, have all multiple factors of performance advantages compared to the best Intel and AMD have to offer.

The performance differences here are just insane, and really showcase just how far ahead Apple’s memory subsystem is in its ability to allow the CPUs to scale to such degree in memory-bound workloads.

Even workloads which are more execution bound, such as 511.porvray or 538.imagick, are – albeit not as dramatically, still very much clearly in favour of the M1 Max, achieving significantly better performance at drastically lower power.

We noted how the M1 Max CPUs are not able to fully take advantage of the DRAM bandwidth of the chip, and as of writing we didn’t measure the M1 Pro, but imagine that design not to score much lower than the M1 Max here. We can’t help but ask ourselves how much better the CPUs would score if the cluster and fabric would allow them to fully utilise the memory.

SPEC2017 Rate-N Estimated Total

In the aggregate scores – there’s two sides. On the SPECint work suite, the M1 Max lies +37% ahead of the best competition, it’s a very clear win here and given the power levels and TDPs, the performance per watt advantages is clear. The M1 Max is also able to outperform desktop chips such as the 11900K, or AMD’s 5800X.

In the SPECfp suite, the M1 Max is in its own category of silicon with no comparison in the market. It completely demolishes any laptop contender, showcasing 2.2x performance of the second-best laptop chip. The M1 Max even manages to outperform the 16-core 5950X – a chip whose package power is at 142W, with rest of system even quite above that. It’s an absolutely absurd comparison and a situation we haven’t seen the likes of.

We also ran the chip with just the 8 performance cores active, as expected, the scores are a little lower at -7-9%, the 2 E-cores here represent a much smaller percentage of the total MT performance than on the M1.

Apple’s stark advantage in specific workloads here do make us ask the question how this translates into application and use-cases. We’ve never seen such a design before, so it’s not exactly clear where things would land, but I think Apple has been rather clear that their focus with these designs is catering to the content creation crowd, the power users who use the large productivity applications, be it in video editing, audio mastering, or code compiling. These are all areas where the microarchitectural characteristics of the M1 Pro/Max would shine and are likely vastly outperform any other system out there.

CPU ST Performance: Not Much Change from M1 GPU Performance: 2-4x For Productivity, Mixed Gaming
Comments Locked

493 Comments

View All Comments

  • coolfactor - Tuesday, October 26, 2021 - link

    That's not true. Yes, they have common roots, but they are definitely not the same OS line-for-line. Prior to M1, they were even compiled for different architectures. The OS is much more than a "skin". Many people wish that macOS and iOS were skinned, so they could customize that skin!
  • darwinosx - Monday, October 25, 2021 - link

    Apple does a lot of open source and contributes to the community.
    https://opensource.apple.com
  • Oxford Guy - Friday, October 29, 2021 - link

    'They've eaten OpenGL problems for years and they've had enough, thus no respect for open-source.'

    My understanding is that Apple stuck with an extremely outdated version of OpenGL for years and years. Hard to claim that open source is the problem, since all the updates were ignored.
  • coolfactor - Tuesday, October 26, 2021 - link

    @photovirus is correct. Metal achieves much better performance because Apple can design it to work on their hardware. Open-source solutions are good in principle and have their solid place in the software universe, but that doesn't mean it's the best solution in _every_ case. Metal solves a problem that plagued Macs for too long.
  • varase - Wednesday, November 3, 2021 - link

    Well, Apple can design it to work with any hardware it uses.

    That has in the past included AMD graphics cards.
  • Eric S - Saturday, October 30, 2021 - link

    Not really. Metal makes sense for Apple. A graphics stack these days is a compiler. It is built on the LLVM project and C++ that they already use for their other compiler work. They will likely base it on their Swift compiler eventually. You can still use Vulcan on Mac and iOS since it’s shading language can be translated to Metal.
  • Hifihedgehog - Monday, October 25, 2021 - link

    > What isn't nice is gaming on macOS

    That's a whole lot of damage control and pussyfooting around the truth. GFXBench is a joke for getting a pulse for real-world performance. In actuality, we are GPU bound at this point. Hence, the linear scaling from the M1 Pro to the M1 Max. The bottom line is this performs like an RTX 3060 in real-world games.
  • zshift - Monday, October 25, 2021 - link

    As noted in the article, these benchmarks were run on x86 executables. The fact that it can keep up with 3060 levels of performance is incredible, but we can’t make any real judgements until we see how natively-compiled games run.
  • sirmo - Monday, October 25, 2021 - link

    @zshift 3060 uses a 192-bit memory bus, M1 Max has 512 bits and a huge GPU. Not to mention 6600xt does even better with less (only 128-bit memory bus). It's also only 11B transistors, while this SoC is 57B for perspective. It really isn't impressive tbh.
  • Ppietra - Monday, October 25, 2021 - link

    If they use different memory type it’s irrelevant to talk bit width.
    Furthermore it doesn’t make much sense as argument to compare a GPU number of transistors with a SoC number.

Log in

Don't have an account? Sign up now