CPU ST Performance: Not Much Change from M1

Apple didn’t talk much about core performance of the new M1 Pro and Max, and this is likely because it hasn’t really changed all that much compared to the M1. We’re still seeing the same Firestrom performance cores, and they’re still clocked at 3.23GHz. The new chip has more caches, and more DRAM bandwidth, but under ST scenarios we’re not expecting large differences.

When we first tested the M1 last year, we had compiled SPEC under Apple’s Xcode compiler, and we lacked a Fortran compiler. We’ve moved onto a vanilla LLVM11 toolchain and making use of GFortran (GCC11) for the numbers published here, allowing us more apple-to-apples comparisons. The figures don’t change much for the C/C++ workloads, but we get a more complete set of figures for the suite due to the Fortran workloads. We keep flags very simple at just “-Ofast” and nothing else.

SPECint2017 Rate-1 Estimated Scores

In SPECint2017, the differences to the M1 are small. 523.xalancbmk is showcasing a large performance improvement, however I don’t think this is due to changes on the chip, but rather a change in Apple’s memory allocator in macOS 12. Unfortunately, we no longer have an M1 device available to us, so these are still older figures from earlier in the year on macOS 11.

Against the competition, the M1 Max either has a significant performance lead, or is able to at least reach parity with the best AMD and Intel have to offer. The chip however doesn’t change the landscape all too much.

SPECfp2017 Rate-1 Estimated Scores

SPECfp2017 also doesn’t change dramatically, 549.fotonik3d does score quite a bit better than the M1, which could be tied to the more available DRAM bandwidth as this workloads puts extreme stress on the memory subsystem, but otherwise the scores change quite little compared to the M1, which is still on average quite ahead of the laptop competition.

SPEC2017 Rate-1 Estimated Total

The M1 Max lands as the top performing laptop chip in SPECint2017, just shy of being the best CPU overall which still goes to the 5950X, but is able to take and maintain the crown from the M1 in the FP suite.

Overall, the new M1 Max doesn’t deliver any large surprises on single-threaded performance metrics, which is also something we didn’t expect the chip to achieve.

Power Behaviour: No Real TDP, but Wide Range CPU MT Performance: A Real Monster
Comments Locked

493 Comments

View All Comments

  • coolfactor - Tuesday, October 26, 2021 - link

    That's not true. Yes, they have common roots, but they are definitely not the same OS line-for-line. Prior to M1, they were even compiled for different architectures. The OS is much more than a "skin". Many people wish that macOS and iOS were skinned, so they could customize that skin!
  • darwinosx - Monday, October 25, 2021 - link

    Apple does a lot of open source and contributes to the community.
    https://opensource.apple.com
  • Oxford Guy - Friday, October 29, 2021 - link

    'They've eaten OpenGL problems for years and they've had enough, thus no respect for open-source.'

    My understanding is that Apple stuck with an extremely outdated version of OpenGL for years and years. Hard to claim that open source is the problem, since all the updates were ignored.
  • coolfactor - Tuesday, October 26, 2021 - link

    @photovirus is correct. Metal achieves much better performance because Apple can design it to work on their hardware. Open-source solutions are good in principle and have their solid place in the software universe, but that doesn't mean it's the best solution in _every_ case. Metal solves a problem that plagued Macs for too long.
  • varase - Wednesday, November 3, 2021 - link

    Well, Apple can design it to work with any hardware it uses.

    That has in the past included AMD graphics cards.
  • Eric S - Saturday, October 30, 2021 - link

    Not really. Metal makes sense for Apple. A graphics stack these days is a compiler. It is built on the LLVM project and C++ that they already use for their other compiler work. They will likely base it on their Swift compiler eventually. You can still use Vulcan on Mac and iOS since it’s shading language can be translated to Metal.
  • Hifihedgehog - Monday, October 25, 2021 - link

    > What isn't nice is gaming on macOS

    That's a whole lot of damage control and pussyfooting around the truth. GFXBench is a joke for getting a pulse for real-world performance. In actuality, we are GPU bound at this point. Hence, the linear scaling from the M1 Pro to the M1 Max. The bottom line is this performs like an RTX 3060 in real-world games.
  • zshift - Monday, October 25, 2021 - link

    As noted in the article, these benchmarks were run on x86 executables. The fact that it can keep up with 3060 levels of performance is incredible, but we can’t make any real judgements until we see how natively-compiled games run.
  • sirmo - Monday, October 25, 2021 - link

    @zshift 3060 uses a 192-bit memory bus, M1 Max has 512 bits and a huge GPU. Not to mention 6600xt does even better with less (only 128-bit memory bus). It's also only 11B transistors, while this SoC is 57B for perspective. It really isn't impressive tbh.
  • Ppietra - Monday, October 25, 2021 - link

    If they use different memory type it’s irrelevant to talk bit width.
    Furthermore it doesn’t make much sense as argument to compare a GPU number of transistors with a SoC number.

Log in

Don't have an account? Sign up now