Package Improvements

As we move to smaller process nodes, the thermal density of high-performance silicon becomes more of an issue, and so all the processor companies put resources into their mechanical design teams to come up with a solution for the best thermal performance but also comes in line with costs. For example, we’ve seen Intel over the years transition from a soldered down heatspreader, to liquid metal, to basic thermal paste (because saving 0.1 cents means a lot across 70m CPUs), and then all the way back again when customers started demanding it.

However, in that time, we’ve pretty much kept the same socket design for mainstream processors. There hasn’t been much emphasis on changing the design itself for thermomechanical improvements in order to retain reuse and compatibility. There have been some minor changes here and there, such as substrate thinning, but nothing that substantial. The move to a new socket for Alder Lake now gives Intel that opportunity.

For Alder Lake, Intel is using an optimized packaging process to reduce the amount of soldered thermal material used in the processors. Combining that with a thinner die, and Intel is having to increase the thickness of the heatspreader to maintain the required z-height for the platform. The idea here is that the limiting factor in the cooling solution is any time we have a thermal interface, from one material to another – in this case, die to solder, and solder to heatspreader. Solder is the weak point here, so if the heatspreader gets thicker to meet the die, then less solder is needed.

Ultimately direct-die liquid cooling would be the boon here, but Intel has to come up with a solution that fits millions of processors. We have seen Intel offer different packaging solutions based on the SKU itself, so it will be interesting if the mid-range still get the Thin Die + Thin STIM treatment, or if they’ll go back to the cheap thermal paste.

Overclocking: We Have Headroom

It wouldn’t be too much of a leap to say that for most users, the only useful overclocking they might want to look at is enabling XMP on their memory. Modern processors these days are so close to their actual voltage and thermal limits out of the box these days that even if there was 200-300 MHz to gain, especially for the top Core i9 parts, it wouldn’t be worth the +100W it produces. I’m also getting to an age now where I prefer a good stable system, rather than eking out every frame, but having lived in the competitive OC scene for a while, I understand the drive that a lot of those users have to go above and beyond. To that end, Intel is introducing a few new features, and reviving some old ones, for Alder Lake.

Alder Lake also complicates things a bit with the P-core and E-core design.

To start, all the cores on the K/KF parts can be overclocked. The P-cores can be overclocked individually, whereas the E-cores are in groups of four. All the E-cores can be disabled, but at least one P-core needs to be enabled for the system to work (this has interesting consequences for Intel’s design). All cores can have additional AVX offsets, per-core ratio and voltage controls, and the ring/uncore ratios can also be adjusted. Memory also has the bells and whistles mentioned on a previous page. Those with integrated graphics can also be adjusted.

What Alder Lake brings back to the table is BCLK overclocking. For the last decade or so, most overclocking is done with the CPU multiplier, and before that it was BCLK or FSB. Intel is now saying that BCLK overclocking has returned, and this is partly due to motherboard customizations in the clock generator. Every Alder Lake CPU has an internal BCLK/clock generator it can use, however motherboard vendors can also apply an external clock generator. Intel expects only the lowest-end motherboards will not have an external generator.

The use of two generators allows the user to overclock the PCIe bus using the external generator, while maintaining a regular BCLK on other parts of the system with the internal clock. The system can also apply voltage in an adaptive way based on the overclock, with additional PLL overrides.

On top of this, Intel is integrating more user-accessible telemetry for its cores, particularly the E-cores, and real-time frequency analysis. On top of this, users can adjust the memory frequency in the operating system, rather than having to reboot – this is an extension of the memory turbo functionality previously mentioned.

For regular users, Intel is also offering a one-click immediate overclock feature. On launch, the Core i9 will be supported and overclock the P-cores +100 MHz and the E-cores +300 MHz immediately. It sounds like Intel is confident that all CPUs will be able to do this, but they want it to be user selectable. Beyond that, I confirmed the tool does still void the warranty. Intel’s VP dismissed it as an issue, citing that the recent overclocker warranty program they canned had such a low pickup, it wasn’t worth continuing. I’d say that the two things are mutually exclusive, but that’s up to Intel.

DDR5: Detailed Support, XMP, Memory Boost Performance and Conclusions
Comments Locked

395 Comments

View All Comments

  • DigitalFreak - Wednesday, October 27, 2021 - link

    Fanboi says what?
  • Kangal - Friday, October 29, 2021 - link

    What?

    But to get a little serious, I don't think Intel is going to win with their big.LITTLE architecture. I feel like ARM has a huge lead on the 15W (or less) demographic. So it would make sense for x86 designers to double-down on their performance lead in the higher thermal envelope. That's what AMD is (seemingly) going for with its focus on lower-latency Infinity Fabric, +5nm node to clock higher, and their 3D-Stacking of Cache. Not to mention all the help from DDR5, Pcie 5, nVme, Wifi 6 etc etc.

    Intel's approach will win them back the Laptop segment, but they won't be winning the tablet segment back from ARM. And even the Gaming Laptop segment won't be an outright victory against AMD's offerings, not to mention the New MacBook Pros. If anything, Intel should have capitalised on their Atom efficiency cores, and do little.BIG computing in like 2018.

    Servers is a position where Intel may see improvements. But it's still in favour of AMD for now and the near future. The bigger threat comes from next-gen ARM-servers. I doubt anything from the left-field will come, RISC-V is still a paperlaunch/niche for the next few years.

    So while I think Intel is (FINALLY) becoming competitive against AMD, I don't think they have enough to go on. Their node is still inferior. Their Xe-Graphics are still inferior to RDNA-2. And they still lag behind AMD's Cores when you factor in Infinity-Fabric and 3D-Cache. Not to mention that the system/kernel is not quiet optimised yet (let alone individual programs) when thinking about Windows11.

    For now, we have to choose from:
    Android, iOS, macOS, Windows
    RISC-V, ARM, Apple-ARM, Intel, AMD.
    ARM-Mali, PowerVR, Apple-Graphics, Nvidia, AMD RDNA.
  • Silver5urfer - Thursday, October 28, 2021 - link

    What is this fanboy junk...sigh.

    ADL demands Windows 11 POS, you want to shill for the HW which demands installing a strictly mobile junk copied OS with zero respect to computing factor on top where they are saying VBS is mandatory on all OEM machines and purposefully nuked AMD L3 performance ?

    I have a positive opinion on this ADL but it has insane changes, like Intel ITD drama who wants to endure that band aid solution of Intel with 2 layer system in between the OS and CPU. On top the major issue being socket longevity. How long this socket will retain it's value and will Intel release another Z790 next year ? No idea.

    Now for your AMD bashing, Zen 3 wiped the floor with 2 generations of processors yeah they have bugs while OCing and DRAM tuning, but if you run at stock no issues and performs very well competitively. And for the ADL performance, it's honestly a joke. Because ADL has small trash cores since Intel wants to sell more BGA junk and they cannot beat the performance with more cores due to 10nm heat.

    Raptor Joke lol so ADL CPU is going to be EOLed under a year lmao, just like 11900K ? 2 CPUs in succession. While 10900K still stands strong. That's Intel for you. Meanwhile AMD's Zen 3 is now ready for 2022 action as well with AM4 and 3D V Cache. Keep using the yearly socket refresh and chipset refresh and CPU refresh while coming here and spout nonsensical load.

    Finally pay up DDR5 tax and premium premature trash DDR5 quality, by 2023-2024 DDR5 will be matured and all ADL buyers will weep hard.

    Now for the closure. Zen 4 is going to steamroll over Raptor Joke, 100% garunteed. Do you think these companies operate without knowing what their competitor is doing ? they operate 2 years ahead of cycle internally. Plus AM4 experience is very important for AMD to fix the bugs from Platform to CPU. Ultimately they cleared out saying we are not using joker big little design. A full far Zen 4, massive price increase is also coming from them, the IPC boost and the ST SMT performance will send fanboys to darkages.
  • Silver5urfer - Thursday, October 28, 2021 - link

    I forgot to post important thing, be happy that you have AMD as competition else Intel would have been selling you 4C CPUs even in 2021 and AMD is pushing x86 to next level, if that design dies or stagnates PC will die. Keep the x86 alive if you want to own a computer not a consumable garbage ARM product.
  • MaxIT - Thursday, October 28, 2021 - link

    That works both ways: AMD dominion is not welcomed in the same way. Did you see what AMD did with prices ? AMD and Intel are the same: when they think they are above competitors, they start taxing customers. Let them fight to prevail: we customers will be the winners
  • Qasar - Thursday, October 28, 2021 - link

    " Did you see what AMD did with prices ? " you referring to the $50 price increase between zen 2 and 3 ? 50 bucks is nothing, compared to how much intel kept raising their prices over the years before zen 1 was released. but yet, very few complained about that.
  • Oxford Guy - Friday, October 29, 2021 - link

    That $50 is a response to the inflation that has been happening from all of the Covid money printing.
  • mode_13h - Friday, October 29, 2021 - link

    It's not only money-printing. There are legit shortages due to outbreaks in factories, and worker-shortages in certain sectors.

    I suspect one reason for the trucker shortage, in the US, is that truck drivers tend to be older and overweight, which are both risk factors for complications from Covid-19 (which the nature of their job also increased their exposure towards). So, I truly wonder how much the US truck driver shortage is due to drivers unable to continue performing their duties due to complications (or death).
  • Spunjji - Friday, October 29, 2021 - link

    @mode_13h - It's a good point. A lot of chatter about the effects of COVID seems to ignore how many people more than usual died. It's not world-war levels of death, but systems subject to stress have to eat into margins to cope, and a lot of the world's financial and supply-chain systems were already under stress from tariffs and sustained economic strife when COVID hit - so there weren't a lot of margins left.
  • mode_13h - Saturday, October 30, 2021 - link

    @Spunjji a lot more people have long-term effects from Covid-19 than the ones who died. Death is just the worst outcome, but there are many people unable to function at the same level as before. And I'm not only talking about "long Covid", where the immune system seems to be stuck in an overstimulated state, but other sorts of cardiovascular and organ damage it can cause.

Log in

Don't have an account? Sign up now