Conclusions

Alder Lake is set to come to market for both desktop and mobile, and we’re expecting the desktop hardware to start to appear by the end of the year – perhaps a little later for the rest of the family, but all-in-all we expect Intel is experiencing some serious squeaky bum time regarding how all the pieces will fit in place at that launch. The two main critical factors are operating systems and memory.

Because Alder Lake is Intel’s first full-stack attempt to commercialize a hybrid design, it has had to work closely with Microsoft to enable all the features it needs to make managing a hybrid core design properly beneficial to users. Intel’s new Thread Director Technology couples an integrated microcontroller per P-core and a new API for Windows 11 such that the scheduler in the operating system can take hints about the workflow on the core at a super fine granularity – every 30 microseconds or so. With information about what each thread is doing (from heavy AVX2 down to spin lock idling), the OS can react when a new thread needs performance, and choose which threads need to be relegated down to the E-core or as a hyperthread (which is classified as slower than an E-core).

When I first learned Alder Lake was going to be a hybrid design, I was perhaps one of the most skeptical users about how it was going to work, especially with some of the limits of Windows 10. At this point today however, with the explanations I have from Intel, I’m more confident than not that they’ve done it right. Some side off-the-record conversations I have had have only bolstered the idea that Microsoft has done everything Intel has asked, and users will need Windows 11 to get that benefit. Windows 10 still has some Hardware Guided Scheduling, but it’s akin to only knowing half the story. The only question is whether Windows 11 will be fully ready by the time Alder Lake comes to market.

For memory, as a core design, Alder Lake will have support for DDR4 and DDR5, however only one can be used at any given time. Systems will have to be designed for one or the other – Intel will state that by offering both, OEMs will have the opportunity to use the right memory at the right time for the right cost, however the push to full DDR5 would simplify the platform a lot more. We’re starting to see DDR5 come to the consumer market, but not in any volume that makes any consumer sense – market research firms expect the market to be 10% DDR5 by the end of 2022, which means that consumers might have to be stay with DDR4 for a while, and vendors will have to choose whether to bundle DDR5 with their systems. Either way, there’s no easy answer to the question ‘what memory should I use with Alder Lake’.

Through The Cores and The Atoms

From a design perspective, both the P-core and E-core are showcasing substantial improvements to their designs compared to previous generations.

The new Golden Cove core has upgraded the front-end decoder, which has been a sticking point for analysis of previous Cove and Lake cores. The exact details of how they operate are still being kept under wraps, but having a 6-wide variable length decoder is going to be an interesting talking point against 8-wide fixed-length decoders in the market and which one is better. The Golden Cove core also has very solid IPC figure gains, Intel saying 19%, although the fact there are some regressions is interesting. Intel did compare Golden Cove to Cypress Cove, the backported desktop core, rather than Willow Cove, the Tiger Lake core, which would have been a more apt comparison given that our testing shows Willow Cove slightly ahead. But still, around 19% is a good figure. Andrei highlights in his analysis that the move from a 10-wide to a 12-wide disaggregated execution back-end should be a good part of that performance, and that most core designs that go down this route end up being good.

However, for Gracemont, Intel has taken that concept to the extreme. Having 17 execution ports allows Intel to clock-gate each port when not in use, and even when you couple that with a smaller 5-wide allocation dispatch and 8-wide retire, it means that without specific code to keep all 17 ports fed, a good number are likely to be disabled, saving power. The performance numbers Intel provided were somewhat insane for Gracemont, suggesting +8% performance over Skylake at peak power, or a variety of 40% ST perf/power or 80% MT perf/power against Skylake. If Gracemont is truly a Skylake-beating architecture, then where have you been! I’m advocating for a 64-core HEDT chip tomorrow.

One harsh criticism Intel is going to get back is dropping AVX-512 for this generation. For the talk we had about ‘no transistor left behind’, Alder Lake dropped it hard. That’s nothing to say if the functionality will come back later, but if rumors are believed and Zen 4 has some AVX-512 support, we might be in a situation where the only latest consumer hardware on the market supporting AVX-512 is from AMD. That would be a turn-up. But AMD’s support is just a rumor, and really if Intel wants to push AVX-512 again, it will have a Sisyphean task to convince everyone it’s what the industry needs.

Where We Go From Here

There are still some unanswered questions as to the Alder Lake design, and stuff that we will test when we get the hardware in hand. Intel has an event planned for the end of October called the Intel InnovatiON event (part of the ON series), which would be the right time to introduce Alder Lake as a product to the world. Exactly when it comes to retail will be a different question, but as long as Intel executes this year on the technology, it should make for an interesting competition with the rest of the market.

Instruction Sets: Alder Lake Dumps AVX-512 in a BIG Way
Comments Locked

223 Comments

View All Comments

  • mode_13h - Friday, August 20, 2021 - link

    All of this focus on IPC seems to miss the fact that we don't know how much power the P-cores burn. So far, Intel's 10 nm nodes haven't enabled it to surpass Ryzen 5000 in terms of perf/W, so it remains an unknown whether "Intel 7" will change that.

    Most people don't use water cooling. To really asses the typical experience of Alder Lake, we'll have to see how well it holds up on a more standard air-cooled setup.
  • Spunjji - Monday, August 23, 2021 - link

    This is my main area of interest, too. I mostly use laptops these days, so I care a lot more about performance at/around TDP than I do about the absolute peaks; especially as what is allowed as an absolute peak varies so much from vendor to vendor. I guess we'll soon see for ourselves how much better "7" is in that regard.
  • Lezmaka - Thursday, August 19, 2021 - link

    Still better than Steam Deck/Stream Deck
  • mode_13h - Thursday, August 19, 2021 - link

    In its i7/i9 incarnation, this CPU will cost more than an entire entry-level Steam Deck!
  • JayNor - Friday, October 15, 2021 - link

    according to new tomshardware article,"Intel Shows Game Developers How to Optimize CPU Performance for Alder Lake", you can enable avx512 use on the Alder Lake Golden Cove cores by disabling the efficiency cores in the bios.

    So, looks like they didn't fuse off the avx512 in hardware...
  • Hulk - Thursday, August 19, 2021 - link

    Yeah! Finally some ADL info from Intel. Settles the debate about ADL needing or not needing a different scheduler than what is currently in Windows.
  • 5j3rul3 - Thursday, August 19, 2021 - link

    It's a big step for Intel, against Amd Ryzen 5000
  • nico_mach - Monday, August 23, 2021 - link

    I have to say it raises some question marks. No Windows 10 for 'full' value. No upgrading the memory to the next standard. And no AVX, which probably someone will care about.
  • SarahKerrigan - Thursday, August 19, 2021 - link

    Golden Cove looks like one heck of a jump.
  • MDD1963 - Thursday, August 19, 2021 - link

    After the hype of the last generation's pre-release environment turned out to end with almost 'laughing stock' results at the release , at least for gains in gaming, I will withhold judgement until I see some comparisons at/near launch day. (I fear we indeed get an 18-19% gain in IPC and then lose it all in clock speed reduction for a net 'wash' in gaming performance...or worse yet, a regression!)

Log in

Don't have an account? Sign up now