CPU Tests: Synthetic

Most of the people in our industry have a love/hate relationship when it comes to synthetic tests. On the one hand, they’re often good for quick summaries of performance and are easy to use, but most of the time the tests aren’t related to any real software. Synthetic tests are often very good at burrowing down to a specific set of instructions and maximizing the performance out of those. Due to requests from a number of our readers, we have the following synthetic tests.

Linux OpenSSL Speed: SHA256

One of our readers reached out in early 2020 and stated that he was interested in looking at OpenSSL hashing rates in Linux. Luckily OpenSSL in Linux has a function called ‘speed’ that allows the user to determine how fast the system is for any given hashing algorithm, as well as signing and verifying messages.

OpenSSL offers a lot of algorithms to choose from, and based on a quick Twitter poll, we narrowed it down to the following:

  1. rsa2048 sign and rsa2048 verify
  2. sha256 at 8K block size
  3. md5 at 8K block size

For each of these tests, we run them in single thread and multithreaded mode. All the graphs are in our benchmark database, Bench, and we use the sha256 results in published reviews.

(8-3c) Linux OpenSSL Speed sha256 8K Block (1T)(8-4c) Linux OpenSSL Speed sha256 8K Block (nT)

GeekBench 5: Link

As a common tool for cross-platform testing between mobile, PC, and Mac, GeekBench is an ultimate exercise in synthetic testing across a range of algorithms looking for peak throughput. Tests include encryption, compression, fast Fourier transform, memory operations, n-body physics, matrix operations, histogram manipulation, and HTML parsing.

I’m including this test due to popular demand, although the results do come across as overly synthetic, and a lot of users often put a lot of weight behind the test due to the fact that it is compiled across different platforms (although with different compilers).

We have both GB5 and GB4 results in our benchmark database. GB5 was introduced to our test suite after already having tested ~25 CPUs, and so the results are a little sporadic by comparison. These spots will be filled in when we retest any of the CPUs.

(8-1c) Geekbench 5 Single Thread(8-1d) Geekbench 5 Multi-Thread

CPU Tests: SPEC

SPEC2017 and SPEC2006 is a series of standardized tests used to probe the overall performance between different systems, different architectures, different microarchitectures, and setups. The code has to be compiled, and then the results can be submitted to an online database for comparison. It covers a range of integer and floating point workloads, and can be very optimized for each CPU, so it is important to check how the benchmarks are being compiled and run.

We run the tests in a harness built through Windows Subsystem for Linux, developed by our own Andrei Frumusanu. WSL has some odd quirks, with one test not running due to a WSL fixed stack size, but for like-for-like testing is good enough. SPEC2006 is deprecated in favor of 2017, but remains an interesting comparison point in our data. Because our scores aren’t official submissions, as per SPEC guidelines we have to declare them as internal estimates from our part.

For compilers, we use LLVM both for C/C++ and Fortan tests, and for Fortran we’re using the Flang compiler. The rationale of using LLVM over GCC is better cross-platform comparisons to platforms that have only have LLVM support and future articles where we’ll investigate this aspect more. We’re not considering closed-sourced compilers such as MSVC or ICC.

clang version 10.0.0
-Ofast -fomit-frame-pointer
-march=x86-64
-mtune=core-avx2
-mfma -mavx -mavx2

Our compiler flags are straightforward, with basic –Ofast and relevant ISA switches to allow for AVX2 instructions. We decided to build our SPEC binaries on AVX2, which puts a limit on Haswell as how old we can go before the testing will fall over. This also means we don’t have AVX512 binaries, primarily because in order to get the best performance, the AVX-512 intrinsic should be packed by a proper expert, as with our AVX-512 benchmark. All of the major vendors, AMD, Intel, and Arm, all support the way in which we are testing SPEC.

To note, the requirements for the SPEC licence state that any benchmark results from SPEC have to be labelled ‘estimated’ until they are verified on the SPEC website as a meaningful representation of the expected performance. This is most often done by the big companies and OEMs to showcase performance to customers, however is quite over the top for what we do as reviewers.

For each of the SPEC targets we are doing, SPEC2006 1T, SPEC2017 1T, and SPEC2017 nT, rather than publish all the separate test data in our reviews, we are going to condense it down into a few interesting data points. The full per-test values are in our benchmark database.

(9-0a) SPEC2006 1T Geomean Total(9-0b) SPEC2017 1T Geomean Total(9-0c) SPEC2017 nT Geomean Total

We’re still running the tests for the Ryzen 5 5600G and Ryzen 3 5300G, but the Ryzen 7 5700G scores strong.

CPU Tests: Legacy and Web Discrete GPU Gaming Tests: 1080p Max with RTX 2080 Ti
Comments Locked

135 Comments

View All Comments

  • mode_13h - Tuesday, August 10, 2021 - link

    > that hot, expensive Gen 4 M.2 NVMe SSD you want to use on your new
    > motherboard will not achieve the speed you paid dearly for.

    None of the 1st gen PCIe 4.0 M.2 NVMe SSDs did, in fact. A lot of them still don't. And if you're not running it at PCIe 4.0, then it's probably also running a bit cooler.
  • alfatekpt - Monday, August 9, 2021 - link

    Currently 5600G and 5600X are at the same price in my country. Should I get the 5600G? I already have a GPU so having an integrated one is only useful in case the GPU breaks or needs to go under warranty and I still can use the PC...
  • mode_13h - Tuesday, August 10, 2021 - link

    I wouldn't get the G. The X is faster in every single benchmark, and sometimes substantially! Plus, you get PCIe 4.0, in case that's ever of interest.

    If you just want a backup GPU, so you're not completely dead in the water, then maybe pick up a used low-end model (especially when GPU prices cool off, a bit). I'm seeing used RX 550's for < $100, which is roughly performance-equivalent.

    If you don't care about performance, then you can go even older. I have a HD 5450 as a sort of last-resort fallback, and those are CHEAP! That's pre-GCN, but I know it still works on Linux. I think it shouldn't be too hard to find something a bit newer that's also cheap, though. Or, if you have some friends who would loan you an obsolete GPU in a pinch, that's also an option worth considering.
  • phoenix_rizzen - Monday, August 9, 2021 - link

    The "Ryzen 5 APUs (65W)" table on page 1 lists the Ryzen 5 CPUs with 8 cores / 16 threads. Should be 6/12 instead.
  • plonk420 - Tuesday, August 10, 2021 - link

    thanks for the core to core latency tests! looks like RPCS3 will definitely benefit from it \o/
  • Oxford Guy - Wednesday, August 11, 2021 - link

    ‘In our largest sub-test, the Intel processors crack on ahead,’

    Did I miss the stuff about performance-per-watt?

    If an Intel chip needs a boatload more power to do the barely faster work, how is that a victory for Intel’s chip?

    Performance-per-watt is important when we’re dealing with today’s 14nm vs. ‘7nm’ situation.

    There should be an entire page devoted to performance-per-watt.
  • mode_13h - Thursday, August 12, 2021 - link

    There is indeed a page on power consumption, but the most revealing charts only compared the three AMD 5000G-series processors to each other. That was a painful omission.

    Intel got included in the peak power chart, but we all know that peak power is hardly the whole story.
  • Oxford Guy - Thursday, August 12, 2021 - link

    ‘There is indeed a page on power consumption’

    Indeed, there is no page on performance-per-watt — and the article continues this site’s erroneous tradition of claiming that getting a slightly higher score in a benchmark whilst using a ton more power constitutes a victory.

    Context is key. These articles should pay more mind to practical context, rather than things like pumping 1.45 volts into Rocket Lake and ignoring power consumption failure (vis-a-vis the competition) when examining a benchmark.
  • mode_13h - Friday, August 13, 2021 - link

    FWIW, I was trying to agree with you. Their "Power Consumption" page had several key omissions.
  • Oxford Guy - Sunday, August 15, 2021 - link

    Regardless... peak power isn’t enough to constitute a page on performance per watt.

Log in

Don't have an account? Sign up now