Dual Core Desktop Performance: AMD's Athlon 64 X2 4400+

AMD didn't send out any Athlon 64 X2 processors for this review. They promised us chips for the real launch in June, but we don't like waiting and neither do most of you, so we improvised.

The Opteron x75 CPUs that AMD sent us run at 2.2GHz and have a 1MB L2 cache per core, which makes the specs basically identical to the Athlon 64 X2 4400+. Although the use of ECC memory and a workstation motherboard would inevitably mean that performance will be slower than what will be when the real Athlon 64 X2s launch, its close enough to get a good idea of the competitiveness of the Athlon 64 X2.

For these tests, we used the same workstation board that we used in the server performance tests, but in doing so, we encountered a lot of other random problems.

With only a single CPU installed in the Tyan S2985, the system would always hang upon restarting Windows. We could shut down Windows fine and we could manually restart the machine, but if we hit Start > Shut Down > Restart, our test bed would always hang at the "Windows is Shutting Down" screen. Populating the second CPU socket fixed that problem, but obviously for our desktop comparison, we only used a single CPU to simulate a single Athlon 64 X2 4400+. The problem is undoubtedly due to the dual core BIOS, but it was frustrating to say the least (note that our normal desktop benchmark suite requires over 200 reboots - and we did every last one by hitting the reset switch on that motherboard).

The next issue we had with the motherboard is that none of the four on-board SATA ports would detect a hard drive. Apparently, this is a common problem with this board and since we were using the absolute latest BIOS revision from Tyan (we had to in order to support dual core), there was no fix for the problem at the time of our testing. Because of this problem, we were forced to use a PATA hard drive, which unfortunately meant that we couldn't test with an NCQ enabled drive.

The final problem we had was that there were significant issues with regards to memory compatibility and performance on this Tyan board with the dual core BIOS. We were forced to run at much slower memory settings than we would normally run on a desktop Athlon 64 motherboard - we had to run with the bus turnaround option set to 2T in order to even get Windows to install. A side effect of some of these issues was that not all of our tests would run properly; most did, but a few didn't make it. Obviously, we'll fill in the blanks when we perform our actual tests for the Athlon 64 X2 review, but this will serve as a preview.

All in all, we were extremely disappointed with the only board that AMD would recommend us to use with their first dual core processors. The BIOS is far from ready and the board seems to have issues that extend beyond what can be attributed to the dual core BIOS. When Intel sent us a dual core setup earlier this month, we were surprised at how stable the system was. Our experience with AMD's platform was the exact opposite. While we're very confident that dual core Opteron systems from tier one OEMs won't have these sorts of issues, the fact that we were having these problems just weeks before the launch of a major CPU is worth mentioning. We've also held off on doing any sort of power consumption analysis between the Athlon 64 X2 and the Pentium 4 until we get desktop platforms in hand. That being said, AMD rates the Athlon 64 X2 as having the same thermal envelope as the current Socket-939 Athlon 64 processors. Thanks to a cool running 90nm process and slightly lower clock speeds, AMD is able to achieve just that.

With the problems out of the way, we were ready to get down to benchmarking. So, we put together a list of CPUs that made sense to compare for the desktop portion of this preview.

AMD's own marketing suggests that based on the price differences between their dual core CPUs and Intel's, the Athlon 64 X2 is in a class above the Pentium D. Instead, AMD suggests that the real competitors to the Pentium D 820, 830 and 840 are the Athlon 64 3400+, 3500+ and 3800+, respectively. To test that theory, we included an Athlon 64 3800+ as well as the fastest single core AMD processor, the Athlon 64 FX-55, in our comparisons.

The comparison that AMD makes is depicted below. Note that this is AMD's marketing comparison, not our own.

For the Athlon 64s, we used MSI's nForce4 SLI board; and for the Intel CPUs, we used Intel's own 955X board. All systems were configured with 1GB of memory and used the same Seagate 120GB PATA HDD and ATI Radeon X850 XT video card. We used the latest Catalyst 5.4 drivers.

Data Warehouse Results Business/General Use Performance
Comments Locked

144 Comments

View All Comments

  • MDme - Friday, April 22, 2005 - link

    #92

    the difference between an opteron and an a64/fx is as follows:

    opteron - needs ECC memory cache is 1mb it is multiplier locked, COHERENT HT LINKS

    a64 - uses non-registered (non-ecc) memory (which is faster), cache 512k-1mb, multiplier locked

    a64fx - non-ecc memory, 1mb cache, unlocked.

    so opteron's are not a64/fx's but are quite similar. the main difference is the memory type and the COHERENT HT links

    therefore the X2 4400+ is really an opteron (dual core) running at 2.2 with dual 1mb cache but with the COHERENT HT link disabled that uses non-ECC ram.

    performance should therefore be almost identical between one DC opteron 2.2ghz and one A64 X2 4400+ (possibly the X2 will be faster 5%) due to the non-ECC memory which is faster.


  • tygrus - Friday, April 22, 2005 - link

    If you use a Opteron 875 then label it as such in all diagrams. You can make a note that the Athlon64 X2 4400+ will perform similarly to the Opteron 875. The differences in MB and RAM will affect results and so a direct re-labelling should not be made.
    Good database, multimedia, data analysis should make good use of multi-core/multi-CPU systems. When I mention data analysis I'm talking about software like SAS 9.1.3 and SAP. Even SAS is only threaded for a few tasks and is a big hassel to pipeline one step into another.
  • Some1ne - Thursday, April 21, 2005 - link

    Good article overall, although I question the validity of declaring that an Opteron 875 is roughly equivalent to an Athlon 64 4400+. I could be wrong, but surely there must be significant architectural differences between the server-class chip (top of the line server-class chip no less) and the desktop Athlon 64? If not then why the price premium for Opterons, and why don't manufacturers just find a way to kludge the Athlon64 to work in MP configurations as in theory if they are really equivalent when run at the same clock speed, it would be much more cost effective to use kludged Athlon 64's, and it would also let higher performance levels to be reached as the dual-core Athlon64's are slated to run at one clock increment higher than the fastest dual-core Opteron's? So anyways, is it *really* valid to treat an Opteron as being essentially equivalent to a similarly clocked Athlon64? As much as I love finally seeing Intel chips trounced pretty much across the board, it seems to me like the results could potentially be inaccurate given that an Opteron 875 was used and simply "labeled" as an Athlon64 4400+.
  • Cygni - Thursday, April 21, 2005 - link

    #89... seeing as how the Opty x75 and A64 X2 are based on functionally identical cores, thats not too likely at all. What DOES seem likely to me reading this article is that BIOS updates, and X2 support on 939 boards, is going to be a very interesting story to follow. It doesnt look like its too easy to get a solid AMD Dual Core BIOS if even Tyan is struggling, of all board mfts. May give a fiesty smaller board mft a chance to slam the bigboys and grab marketshare (such as ECS with the K7S5A).
  • Jason Clark - Thursday, April 21, 2005 - link

    saratoga, waah? There are similarities between C# and C++. While agree it's java'ish as well, it definitely has similarties to c++. One could say c# shaes similarities with c/c/c++.

    read away:

    http://www.mastercsharp.com/article.aspx?ArticleID...

    http://www.csharphelp.com/archives/archive138.html

    "C# is directly related to C and C++. This is not just an idea, this is real. As you recall C is a root for C++ and C++ is a superset of C. C and C++ shares several syntax, library and functionality." Quoted from above.

    L8r.




  • Jep4444 - Thursday, April 21, 2005 - link

    I've spoken to a few people from XS who have Engineering Samples of the Athlon X2s and all im hearing is that arent nearly as good as the dual core Opterons, they were apparently rushed
  • xtknight - Thursday, April 21, 2005 - link

    #86 - the r_smp cvar was disabled in quake3 in a patch, for a reason i don't know. i confirmed this by having quake3 crash on my p4 HT CPU with that setting enabled. as for doom3, i'm not sure. i'm guessing it's not implemented well enough yet...
  • Chuckles - Thursday, April 21, 2005 - link

    #83:
    "Real gamers" may use a single core, but I have been hankering for duallies since I tried an older dual G4 to my newer single G4. Even on the crappy MaxBus, I could browse the web, chat, do "real work" and game, without having everything go to pot when a bolus of e-mail came in.
    When you buy a dualie of any type, you buy the ability to do other stuff while you computer working on its latest task. Remember that when you get lagged while Outlook downloads your latest spam.

  • Googer - Thursday, April 21, 2005 - link

    Why wern't there any SMP Tests done on Quake 3 engine, after all it is said to be multithreaded.

    Also, Carmack said during the devlopment of DOOM3 that the engine was going to support multiple processors, did this ever happen? Does anyone know what the command might be for D3 console to enable SMP, like it's cousin? How much truth is there to this?
  • Nighteye2 - Thursday, April 21, 2005 - link

    Add to all the arguments that we can potentially see programs taking advantage of this quite soon...without the effort required to implement full multi-threading, game functions could be assigned to use the other processor if it's available. For example, AI can be done by one core, while the other core does the rest of running the game.

Log in

Don't have an account? Sign up now