Conclusion & First Impressions

The new Snapdragon 888 is overall a very impressive package from Qualcomm, advancing the most important areas for which today’s smartphones are being used. 5G connectivity was the big new feature of 2020 SoCs and smartphones, and the new 888 platform represents the evolution and maturing of the new technologies that had been introduced in prior generations.

The big focus point of the Snapdragon 888 were clearly AI and cameras. The new Hexagon 780 IP block looks immensely impressive and to me seems like a major competitive advantage of the new SoC design – other vendors which aren’t as vertically integrated with their accelerator IPs will have to respond to Qualcomm’s new advancements as it seems like a major performance advantage that will be hard to mimic.

Today’s flagship smartphones have diminished ways of differentiating themselves from one another, with the cameras still being the one aspect where vendors still have very different approaches to their designs. Qualcomm’s push for a triple-ISP system in the Snapdragon 888 pushes the upper limits of what vendors will be able to do on their smartphones, allowing for a continued push for the smartphone camera ecosystem. Even for still-picture camera experiences, it seems that Qualcomm is expecting a more notable technology jump in 2021 as we see the introduction of new sensors and imaging techniques, enabled by the new SoC.

The new CPU configuration gives the new SoC a good uplift in performance, although it’s admittedly less of a jump than I had hoped for this generation of Cortex-X1 designs, and I do think Qualcomm won’t be able to retain the performance crown for this generation of Android-SoCs, with the performance gap against Apple’s SoCs also narrowing less than we had hoped for.

On the GPU side, the new 35% performance uplift is extremely impressive. If Qualcomm is really able to maintain similar power figures this generation, it should allow the Snapdragon 888 to retake the performance crown in mobile, and actually retain it for the majority of 2021.

The new Snapdragon 888 to me looks like a continuation of Qualcomm’s excellent execution over the last few years. Striking a balance between performance, power efficiency, and features is something that may be harder than it sounds, and Qualcomm’s engineering teams here seem to be focused on being able to deliver the overall best package.

Much like the Snapdragon 865, and the last couple of generations of Snapdragon SoCs before it, I expect the new Snapdragon 888 to be an excellent foundation for 2021’s flagship devices, and I’m looking forward to experience the new generation.

Related Reading:

Triple ISPs: Concurrent Triple-Camera Usage
Comments Locked

123 Comments

View All Comments

  • dudedud - Wednesday, December 2, 2020 - link

    If the Vivo (V2056A) GB's scores are legit, this implementation of the X1 will be much more close to A12 than to the A13.
  • abufrejoval - Thursday, December 3, 2020 - link

    I'd say they design their SoC to suit their usage. And that is a mixed bag full of compromises, matching what people are actually doing on these devices. Very little of that is HPC.

    The single X1 is for all that fat single-threaded desktop-class browser code out there, that only gets tolerable response times on a 4GHz Pentium 4, but hopefully won't run longer than a couple hundred milliseconds, because an X1 core simply can't run 24x7 on a mobile power budget.

    Mobile games better run on the efficiency cores mainly (apart from the GPU), with perhaps short bursts on the power cores, because otherwise not even an hour worth of game time may be possible on a single charge (or without burning your fingers).

    In short, don't expect all of these resources used at full capacity for any extended time. Instead these SoCs become a computing appliance farm with specialists for many different tasks, designed to do very little to nothing most of the time and as aesthetically pleasing inside as any SME server room that evolved with the business for 20 years.

    To ask for a revolutionary design on a new process from a different fab is perhaps asking just a little bit too much, especially when they need to sell another generation next year.

    For such a bad job I am seriously considering that the 888 may be enough of an upgrade over my current 855 to consider, once they sell these devices at reasonable prices (~€500) and with LinageOS support late 2021 or early 2022 with the 895's imminent arrival.

    Honestly I've stopped asking for more smartphone computing power since the 820, been perfectly happy with energy effiency since the 835 and been waiting for a proper desktop mode since the first DeX on an 800.

    It's hard to sell more when the need doesn't really grow or you can have 500 Watts of desktop power any time you sit done for something serious.
  • eastcoast_pete - Wednesday, December 2, 2020 - link

    As for the choice of Samsung's 5 nm LPE for the manufacturing, I suspect it's not just TSMC's capacity that made QC go Sammy. My guess is that Samsung fabbed it for less - that simple. Sort of why NVIDIA chose Samsung's 8 nm for Ampere; they did it for less.
  • abufrejoval - Thursday, December 3, 2020 - link

    With China flexing its muscle over Taiwan, Korea may be more attractive in other ways, too.

    Then I wonder if the 5nm node on Samsung may actually be faster from start to finish with EUV replacing all those multi-masking and multi-patterning steps...
  • trivik12 - Wednesday, December 2, 2020 - link

    Thanks for the detailed article. Did Qualcomm go with Samsung as they will be taking process leadership in the near future with 1st GAAFET implementation in 2023. It would be good to see where Samsung 5nm is relative to TSMC.

    Looking at improvements from process and architecture, I feel even ARM is close to hitting the wall.
  • brucethemoose - Wednesday, December 2, 2020 - link

    IDK about that. The schedule is *far* from set in stone, with how extreme the physics are.
  • tkSteveFOX - Wednesday, December 2, 2020 - link

    I think ARM wants to keep everyone out of reach of Apple's performance dominance.
    A55 is vastly inferior to the last 3 gens of small cores Apple has used.
    X1 is decent but seeing just a single core in there isn't great.
    Not using 8mb cache is purely driven by greed. It will make the chips cost higher and that's why QC aren't doing it, there are substantial gains from using more cache on a CPU in heavy workloads.
    All these companies want to make money, so they cut costs of their chips and that's why Android will always be behind iOS.
    Apple gives you the most bleeding edge stuff without sacrificing on the chip.
  • id4andrei - Wednesday, December 2, 2020 - link

    That is because QC has to sell these chips to OEMs that have to be able to afford them. Apple doesn't have to sell to no one. They have high margins to justify their investment in performance beyond the scope of Xiaomi, LG, Samsung.
  • melgross - Wednesday, December 2, 2020 - link

    ARM doesn’t care about that. They sell designs that are good enough to make them enough money to make a good profit and allow for further work. It’s up to the OEMs to make the changes allowed through the design license to make some improvements. Failing that, companies can get an architectural license as Apple and a few others do, which lets them design cores and subsystems from scratch.

    Both Qualcomm and Samsung tried that for a few years, but failed to come up with good designs. So they went back to licensing designs from ARM.
  • Silver5urfer - Wednesday, December 2, 2020 - link

    SD820 is not a failure, it was a full custom design which was not a disaster it was superb and even had the IPC speed higher than 835, that's where all this Kryo started. Then Qcomm moved all of their engg arch teams to Centriq the ever famous most powerful ARM server processor, they axed it even after putting so much R&D in that with Cloudflare marketing. Since then Qcomm never made any custom cores. Only Samsung did with ambitious aims but failed to optimize it for the smartphone.

    And in the end it doesn't even matter, because phones are going to be on parity with A14. Just looking and gaming performance and application performance tests which are real world shows 865 is not even that far vs A14 in some aspects. And Qcomm is putting money where it matters - GPU and 5G.

Log in

Don't have an account? Sign up now